MITIGATION PLAN FINAL MIDDLE SOUTH MUDDY CREEK RESTORATION McDowell County, NC EEP Project No: 93875

CATAWBA RIVER BASIN CATALOGING UNIT 03050101

Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

March 2012

MITIGATION PLAN FINAL MIDDLE SOUTH MUDDY CREEK RESTORATION McDowell County, NC EEP Project No: 93875

CATAWBA RIVER BASIN CATALOGING UNIT 03050101

Prepared for:

NC Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Prepared by:

re

Wolf Creek Engineering, PLLC 7 Florida Ave Weaverville, North Carolina 28787 828-658-3649

EXECUTIVE SUMMARY

The North Carolina Ecosystem Enhancement Program (EEP) proposes to restore, enhance, and preserve reaches of South Muddy Creek and two of its tributaries at two sites located in southeastern McDowell County. This Mitigation Plan describes the details, methods, and monitoring protocols proposed to generate approximately **3,281 stream mitigation credits**, which includes approximately **1,990 linear feet of stream restoration**, approximately **195 linear feet of stream enhancement** and approximately **5,836 linear feet of preservation**.

General Site Conditions

The Middle South Muddy Creek Site (the Site) occurs near the intersection of Brackett Town Road and Sprouse Road in southeastern McDowell County. The Site encompasses approximately 5.87 acres of predominately agricultural land. Within the Site, approximately 2,201 linear feet of channel exhibit mitigation potential. Agricultural practices including cattle grazing, maintenance and removal of vegetation, and relocating, dredging, and straightening of on-site streams have contributed to the degraded water quality and unstable channel characteristics.

Included as a part of this project is the Haney Preservation Tract, which is located just north of the Middle South Muddy Creek Site along Vein Mountain Road. This tract preserves 5,836 LF of stream and approximately 35 acres of buffer along South Muddy Creek.

The Middle South Muddy Creek Site and the Haney Preservation Tract were both identified as part of a Local Watershed Planning (LWP) initiative conducted by the Muddy Creek Restoration Partnership and covering the entire Muddy Creek Watershed, which culminated in development of a Feasibility Report & Restoration Plan in late 2003. An updated and expanded project atlas for the Muddy Creek LWP area was completed using EEP funding in 2008. This LWP meets criteria for CFR-compliant watershed assessment and planning to support mitigation requirements under the Clean Water Act.

Restoration Concept

Restoration and enhancement practices proposed for this project have been designed with the intent to minimize unnecessary disturbance to adjacent land. Professional judgment has been used to determine which channel reaches could potentially benefit most from preservation or enhancement over full restoration. Where restoration was determined to be warranted, consideration was given to which reaches could best be served by maintaining as much of the existing channel pattern as possible.

Proposed South Muddy Creek is designed as a Type C4 stream. This channel configuration provides a stable and natural form in the Type VIII(b) alluvial valley in which the existing stream is found. Proposed Sprouse Branch and Iva Branch are designed as Type B5 streams. These channel configurations provide the most stable and natural form for these slightly entrenched channels flowing through moderately sloped colluvial valleys. The proposed channel dimensions, patterns, and profiles are based on hydraulic relationships and morphologic dimensionless ratios of the reference reaches.

The installation of brush, rock, and wood structures will be utilized throughout the restored reaches of the Site. Brush toe structures will be installed along the toe of bank to provide roughness and bank stability on outer meander bends. Boulder structures will be used for grade control to prevent headcut formation. Log vanes with rootwads will be installed in meander bends to direct the flow away from the outside of the bend and provide toe and bank protection. On-site material including brush, boulders, logs, and bed material will be used to the maximum extent possible and in-stream structures will be designed to improve aquatic habitat.

This mitigation plan has been written in conformance with the requirements of the following:

• Federal rule for compensatory mitigation project sites as described in the Federal Register Title 33 Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.8 paragraphs (c)(2) through (c)(14).

 NCDENR Ecosystem Enhancement Program In-Lieu Fee Instrument signed and dated July 28, 2010

These documents govern NCEEP operations and procedures for the delivery of compensatory mitigation.

Table of Contents

1. Restoration Project Goals and Objectives	1
2. Site Selection	
2.1 Directions	3
2.2 Site Selection	3
2.3 Site Maps	6
2.9 Site Photographs	12
3. Site Protection Instrument	18
3.1 Site Protection Instrument(s) Summary Information	
3.2 Site Protection Instrument Figures	19
4. Baseline Information	21
4.1 Watershed Summary Information	21
4.2 Reach Summary Information	21
4.3 Wetland Summary Information	21
4.4 Regulatory Summary Information	21
5. Determination of Credits	
6. Credit Release Schedule	23
7. Mitigation Work Plan	
7.1 Target stream type(s), wetland type(s), and plant communities	25
7.2 Design parameters	
7.3 Data analysis	27
8. Maintenance Plan	
9. Performance Standards	
10. Monitoring Requirements	
11. Long-Term Management Plan	
12. Adaptive Management Plan	
13. Financial Assurances	
14. Other Information	
14.1 Definitions	34
14.2 References	
Figures	
٦ Vicinity Map	6
2 Watershed Map	7
3 Soil Survey Map	8
4 Current Condition Plan View- MSMC Restoration Site	9
5 Current Condition Plan View- Haney Tract	10
6 Historical Condition Plan View	11
7 Conservation Easement- MSMC Restoration Site	19
8 Conservation Easement- Haney Tract	20
9 Proposed Conditions Map	

Appendices

Appendix A. Site Protection Instruments Appendix B. Baseline Information Data Appendix C. Mitigation Work Plan Data and Analyses Appendix D. Project Plan Sheets

1.0 RESTORATION PROJECT GOALS AND OBJECTIVES

The Middle South Muddy Creek Project (the Site) is located in the Muddy Creek Local Watershed planning area (<u>http://www.nceep.net/services/lwps/muddy creek/Muddy Creek plan 2003.pdf</u>). The Project Site watershed includes Hydrologic Unit Code (HUC) 03050101040020 which was identified as a Targeted Local Watershed (TLW) in EEP's 2009 Upper Catawba River Basin Restoration Priority (RBRP) Plans (<u>http://www.nceep.net/services/restplans/Upper Catawba RBRP 2009.pdf</u>).

The Muddy Creek Restoration Partnership (MCRP) developed a local watershed plan (LWP) for the 111 sq mi drainage area that included land use analysis, water quality monitoring and stakeholder input to identify problems with water quality, habitat and hydrology. The Muddy Creek watershed is characterized as primarily agricultural and has a history of entrenchment and increased sediment problems due to barren bank issues. MCRP completed the Feasibility Report and Restoration Plan for the Muddy Creek Watershed in December 2003

(http://www.nceep.net/services/lwps/muddy_creek/Muddy_Creek_plan_2003.pdf).

The Muddy Creek LWP identified nutrients, streambank erosion and livestock access to streams as major stressors within this watershed. The LWP Feasibility Report (2003) included an initial set of project site recommendations, including identification of the Middle South Muddy Creek Project as a stream restoration and enhancement opportunity with the potential to improve water quality and habitat within the Muddy Creek watershed. The Muddy Creek Mitigation Search Final Summary Report (2008), which was prepared to address the plans and objectives of the MCRP, additionally identified the Haney Tract as a mitigation opportunity.

The goals of the Middle South Muddy Creek Project address stressors identified in the LWP and include the following:

The following goals are established to guide the restoration process for the project:

- Improve local water quality within the restored channel reaches as well as the downstream watercourses through: (a) the reduction of current channel sediment loads by restoring appropriately sized channels with stable beds and banks, (b) the reduction of nutrient loads from adjacent agricultural fields with a restored riparian buffer, and (c) the reduction of water temperatures provided through shading of the channel by canopy species along with the resultant increase in oxygen content.
- 2.) Improve local aquatic and terrestrial habitat and diversity within the restored channels and their vicinity through: (a) the restoration of appropriate bed form to provide habitat for fish, amphibian, and benthic species, (b) the restoration of a suitable riparian buffer corridor in order to provide both vertical and horizontal structure and connectivity with adjacent upland areas, and (c) the restoration of understory and canopy species in order to provide forage, cover, and nesting for a variety of mammals, reptiles, and avian species.
- 3.) Preclude land disturbing activities including the construction of additional infrastructure, future mining activities and agricultural practices including cattle grazing and the application of pesticides and fertilizer within the riparian buffer area by providing a permanent conservation easement.

The following objectives are proposed for accomplishing the above listed goals:

- 1.) Provide approximately 3,281 stream mitigation units (SMU's) through Priority I and II restoration of approximately 1,990 linear feet of stream, enhancement of approximately 195 linear feet of stream, and preservation of approximately 5,836 linear feet of stream threatened by mining activities.
- 2.) Restore natural stable channel morphology and proper sediment transport capacity.
- 3.) Create and/or improve bed form diversity and improve aquatic and benthic macroinvertebrate habitat.
- 4.) Construct a floodplain bench that is accessible at the proposed bankfull discharge.
- 5.) Improve channel and stream bank stabilization by integrating in-stream structures and native bank vegetation.

- 6.) Provide approximately 5.87 acres of riparian buffer restoration by establishing a native forested and herbaceous riparian buffer plant community with a minimum width of 30 feet from the edge of the restored channels. This new community will be established in conjunction with the eradication of any existing exotic and/or undesirable plant species.
- 7.) Construct barricades on existing dirt road network on Haney Tract to prevent future vehicular trespassing.

2.0 SITE SELECTION

2.1 Directions to Site

The Middle South Muddy Creek Restoration Site is located approximately 9.5 miles southeast of Marion, NC in southeast McDowell County (See Figure 1). From Raleigh take I-40 West, or from Asheville take I-40 East toward Marion. Take exit 85 and follow NC-221 South for approximately 5.5 miles. Turn left onto Polly Spouts Rd. and follow for approximately 2 miles. Turn left onto Vein Mountain Rd. and follow for approximately 3 miles. Turn right onto Brackett Town Rd. and follow for approximately 1 mile. The entrance to the Site is on the left at Sprouse Rd. and is located at a Lat/Long of 35.5635° N and 81.9249° W.

2.2 Site Selection

2.2.1 Description

The Site encompasses approximately 5.87 acres of predominately agricultural and forested land and includes approximately 2,513 linear feet of degraded channel proposed for restoration and enhancement. Historic land use at the Site has consisted primarily of agriculture and livestock grazing. Livestock have unrestricted access to the majority of Site streams, resulting in significant local disturbance to stream banks. Additional land use practices, including the maintenance and removal of riparian vegetation, and the relocating, dredging, and straightening of on-site streams have contributed to the degraded water quality and unstable channel characteristics.

2.2.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designations

The Site is located in the Catawba River Basin, United States Geological Survey (USGS) 14-digit Hydrologic Unit 03050101040020, within the North Carolina Division of Water Quality (DWQ) sub basin 03-08-30. The Site lies within a NC EEP Targeted Local Watershed and is part of a Local Watershed Plan. Site tributaries are not listed on the NCDWQ final 2010 303(d) lists (NCDWQ 2010). South Muddy Creek drains to Muddy Creek approximately 12.5 miles downstream of the Site which in turn drains into the Catawba River another 4.5 miles downstream. South Muddy Creek has been assigned the Stream Index Number 11-32-2 by DWQ.

2.2.3 Watershed Characterization

The Site watershed is characteristic of the Foothills region with moderate rainfall and moderate valley slopes (5% to 20%). Annual precipitation within McDowell County averages 56.1 inches and elevations within the Site range from 1,315 ft. on upper slopes above Sprouse Branch to 1,263 ft. at the site outfall (NGVD). The Site encompasses approximately 2,513 linear feet of streams including **South Muddy Creek** and two tributaries, named for the purposes of this project as **Sprouse Branch** and **Iva Branch**.

The drainage area of South Muddy Creek is 4.52 mi^2 (2,893 ac) at the upstream project limits and 4.69 mi² (3,002 ac) at the downstream limits. The headwaters of both Sprouse Branch and Iva Branch are located within the project extents, and the drainage areas at their confluences with South Muddy Creek are 0.042 mi² and 0.046 mi², respectively.

2.2.4 Surface Water Classification

According to the North Carolina Department of Environment and Natural Resources (NCDENR), Division of Water Quality (DWQ) website, South Muddy Creek has been assigned a Best Usage Classification of **C**. The section of the Catawba River that South Muddy Creek and the project tributaries drain to has been assigned the Best Usage Classification of **WS-IV; Tr**. Class **C** waters are suitable for aquatic life propagation and survival, fishing, wildlife, secondary recreation, and agriculture. The designation **Tr** (Trout Waters) includes areas protected for natural trout propagation and survival of stocked trout. The designation **WS-IV** (Water Supply IV) indicates waters used as sources of water supply for drinking, culinary or food processing purposes where a WS-I, II or III classification is not feasible. These waters are also protected for Class C uses. WS-IV waters are generally in moderately to highly developed watersheds or Protected Areas.

2.2.5 Physiography, Geology, and Soils

The Site is located in the Eastern Blue Ridge Foothills ecoregion of North Carolina. Regional physiography is characterized by open, low mountains at a lower elevation than most Blue Ridge regions having more Piedmont influences. This region includes the Brushy Mountains to the north and the South Mountains to the south. Covered with mixed oak and oak-hickory-pine forests, these mountains tend to be slightly drier and warmer than most of the Blue Ridge ecoregion. The underlying geology within the ecoregion consists of primarily metamorphic rocks with occasional igneous and sedimentary deposits. The local lithology is mapped as migmatitic granitic gneiss.

The valley associated with the portion of South Muddy Creek within the project extents is a narrow alluvial valley, Type VIII(b) (Rosgen) with cross-slopes ranging from 1% to 3% and a longitudinal slope approximately 0.4%. The valleys of Sprouse Branch and Iva Branch are moderately sloped Type II (Rosgen) colluvial valleys with a down valley gradient of 2% to 5% that transition onto the gentle alluvial valley of South Muddy Creek.

The Site lies in the low mountains of North Carolina in rolling topography underlain by metamorphic and igneous bedrock. The side slopes in the area are well drained, moderately permeable, sandy-loamy subsoils (Hayesville-Evard Soil Series). The alluvial soils along the stream systems in the area are generally underlain by yellowish-brown, sandy-loamy sub-soils belonging to the lotla series. These somewhat poorly drained soils are moderately permeable and are non-hydric.

2.2.6 Historical Land Use and Development Trends

The watershed upstream of the Site is characterized mainly by agricultural and forested land with moderate to heavy mineral mining activity occurring in close proximity to tributaries. Mining activities appear to be non-commercial individual prospecting for gold. Most of these activities appear to have occurred in the floodplain, however there is evidence of some incursion into the stream channels. Residential land use accounts for only a marginal percentage of the watershed. Currently rural residential land use makes up approximately 3 percent of the watershed and impervious area covers less than 1 percent of the total watershed. Historical land use was evaluated through conducting interviews of property owners and reviewing aerial photos from 1954 through 2010 (ERTR, June 2011). Historical land use has been consistent with present land use practices that include pastureland for cattle, hay production, and some forest stands. Grazing livestock have historically had access to most on-site stream reaches and the adjacent terraces.

2.2.7 Existing Site Conditions

South Muddy Creek

Based on the present configuration of the channel and on typical historical agricultural practices it is likely that South Muddy Creek was realigned and dredged throughout the project reach. The resulting channel form exhibits low sinuosity and moderate incision. The channel classifies as a Type G4 stream under the Rosgen channel classification system throughout the majority of the on-site reach. The existing entrenchment ratios range from 1.2 - 2.6, bank-height ratios range from 1.8 - 2.5, and the width/depth ratio is 3.3 - 9.6. The high bank-height ratios and low width/depth ratios result in increasing the stress on the stream banks. The profile appears vertically stable due to the low channel gradient, although the riffle-pool form is poorly developed and often misaligned with the pattern, further contributing to near-bank stress. Mobile bed material consists mainly of gravel (38%-65%) with lesser constituents of cobble (19%-24%) and a considerable fraction of sand (16%-37%).

South Muddy Creek was divided into two vegetative community types due to the presence of livestock below the culvert. The upper reach is characterized as agricultural pastureland and is utilized primarily for hay production with the dominant grass being fescue (*Festuca sp.*). The riparian buffer, adjacent to the agricultural field, is only 5 to 10 feet wide and is dominated by tag alder (*Alnus serrulata*), red maple (*Acer rubrum*) and river birch (*Betula nigra*). The existing riparian buffer consists of less than 5% invasive exotics including Japanese honeysuckle (*Lonicera japonica*) and Chinese privet (*Ligustrum sinense*). The lower reach is also characterized as agricultural pastureland, but it is primarily used for livestock production. The riparian buffer is 0 to 5 feet and is dominated by tag alder, red maple, tulip poplar (*Liriodendron tulipifera*), and river birch. There were no significant invasive exotics populations observed in this reach.

Sprouse Branch

Sprouse Branch originates from a spring within a forested reach at the upstream project extents. The toeof-slope spring, which forms a small channel within a confined valley, is impacted by livestock and erosion. At the termination of the forested reach, Sprouse Branch continues as a dredged and straightened ditch. Entrenchment ratios are generally low; between 1.1 and 1.9. Width/depth ratios are moderate at the upstream end and low at the downstream end; 11 - 13 and 6 - 7, respectively. The channel classifies as a Type G5 stream. Bed material is composed mainly of sand with only a small fraction of gravel (<10%). The gravel present in the channel is in the fine gravel class (4-8 mm).

The upper reach (~200') of Sprouse Branch is dominated by red maple, black cherry (*Prunus serotina*), and tulip poplar. The lower reach is agricultural pastureland dominated by fescue with tag alder present along the ditch banks. Less than 5% of the riparian buffer contained invasive exotics including multiflora rose (*Rosa multiflora*), Japanese honeysuckle and Chinese privet.

Iva Branch

Iva Branch originates within a drawline that drains a small catchment at the northeast project extents. The channel remains vertically unstable as multiple headcuts have formed and migrated upstream to form a deeply entrenched channel with steep, vertical bluffs. Unrestricted livestock access continues to exacerbate instability. Entrenchment ratios range between 1.1 and 1.4. Banks are up to eight (8) feet high at the upstream end of the channel and decrease to four (4) feet near the downstream end. The channel bed slope ranges from 3% to 5% and the typical valley slope is 3.5%. The channel classifies as a Type G5 stream as bed material is composed mainly of sand (79%) with small gravel (19%) accumulating towards the downstream end.

Iva Branch has a 5 to 15 foot riparian buffer comprised of red maple, river birch, American sycamore (*Platanus occidentalis*), and black cherry. The surrounding pastureland is dominated by fescue. Other species observed within the riparian zone include American holly (*Ilex opaca*), shortleaf pine (*Pinus echinata*), black walnut (*Juglans nigra*) and red cedar (*Juniperus virginiana*). Iva Branch contained the largest amount of invasive exotics (15%). Invasives observed included multiflora rose, Chinese privet, and Japanese honeysuckle.

Haney Tract

The Haney Tract is located approximately 1,000 feet downstream of the Middle South Muddy Creek Site. This tract was identified as a target for preservation in the 2008 Muddy Creek Mitigation Search Final Summary Report (September 2008). This tract has since been acquired for preservation and will preserve 5,836 LF of stream channel and approximately 35 acres of riparian buffer.

Historically the property has been the location of continuous mining for at least 50 years. Mining operations may have been commercial at one time, but recently consisted of a club of individual prospectors mining for gold lag deposits in the floodplain. Establishment of the conservation easement will protect the stream and adjacent floodplain from future destructive mining activities.

Historical Aerial Photo 1954 827 BRACKETT TOWN ROAD NEBO, NC 28761

Target Site: 35.564 -81.922; Job Number: 827 BRACKETT TOWN RD

1 inch equals 750 feet

<image>

South Muddy Creek facing upstream @ Sta 100+50

3/21/11

Photo No. 2

South Muddy Creek facing downstream @ Sta 102+50

3/21/11

Photo No. 3

Downstream of Bridge on South Muddy Creek @ Sta 105+25 facing upstream 2/18/11 Photo No. 4

Livestock Access - Eroding 3.5' banks on SMC @ Sta 105+25 downstream 2/18/11

Photo No. 5

Mature trees on SMC at Sta 110+50 facing upstream

3/21/11

Photo No. 6

Sprouse Branch spring @ Sta 200-50 facing upstream

2/18/11

Sprouse Branch transition from woods to ag ditch @ Sta 201+00 facing upstream 2/18/11

Photo No. 8

Sprouse Branch agricultural ditch @ Sta 206+00 facing upstream

2/18/11

Draw forming Iva Branch @ Sta 300+00 facing upstream

2/18/11

Photo No. 10

High banks and erosion on Iva Branch @ Sta 303+75 facing upstream

2/18/11

3.0 SITE PROTECTION INSTRUMENT

The land required for the construction, management, and stewardship of this mitigation project includes portions of the following parcels. A copy of the land protection instrument(s) is included in the appendices.

	Landowner	PIN	County	Site Protection	Deed Book and	Acreage
				Instrument	Page Number	protected
Parcel A	Larry Lee Sprouse	1637-13-2331	McDowell	Easement		
				(Pending)		
Parcel B	Nora & Richard Worthen	1637-03-3441	McDowell	Easement		
				(Pending)		
Parcel C	Earl & Iva Sprouse	1637-13-3051	McDowell	Easement		
				(Pending)		
Parcel D	Demming Company	1637-25-3891	McDowell	Easement	DB:772 PG: 600	35.19 ac
	(James Haney)					

When available, the recorded document(s) will be provided. If the recorded document(s) are not available, the template documents will be provided.

All site protection instruments require 60-day advance notification to the Corps and the State prior to any action to void, amend, or modify the document. No such action shall take place unless approved by the State.

4.0 BASELINE INFORMATION

Project In	formation							
Project Name	Middle South Muddy Creek							
County	McDowell							
Project Area (acres)	5.87							
Project Coordinates (latitude and longitude)		35.5635° N . 81.9249° \	N					
Project Watershed S	Summary Informatio	n						
Physiographic Province		Blue Ridge						
River Basin		Catawba River						
USGS Hydrologic Unit 8-digit 03050101	USGS Hydrologic	c Unit 14-digit 0305	0101040020					
DWQ Sub-basin		03-08-30						
Project Drainage Area (acres)		2,893						
Project Drainage Area Percentage of Impervious Area		> 1%						
CGIA Land Use Classification		2.03.01.01						
Reach Summa	ary Information							
Parameters	South Muddy Cre	ek Iva Branch	Sprouse Branch					
Length of reach (linear feet)	1108	471	622					
Valley classification (Rosgen)	Valley Type VI	IIb Valley Type II	Valley Type II					
Drainage area (acres)	3.002	27	29					
NCDWQ stream identification score	44	31	34					
NCDWQ Water Quality Classification	С	С	C					
Morphological Description (stream type) (Rosgen)	G4	G5	G5					
Evolutionary trend (Rosgen)	F4	G5	G5					
Underlying mapped soils	lotla. Havesvil	le lotla, Havesville	lotla. Havesville					
	Clav	Clav	Clav					
Drainage class	Poorly draine	d Poorly drained	Poorly drained					
Soil Hydric status	Non-hydric	Non-hydric	Non-hydric					
Slope	0.4%	4.6 %	2.2 %					
FEMA classification	Limited Detai	I N/A	N/A					
Native vegetation community	Agricultural	Agricultural	Agricultural					
Percent composition of exotic invasive vegetation	<5%	15%	<5%					
Wetland Summ	Wetland Summary Information							
Parameters	Wetland 1	Wetland 2	Wetland 3					
Size of Wetland (acres)	-	-	-					
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	-	-	-					
Mapped Soil Series	-	-	-					
Drainage class	-	-	-					
Soil Hydric Status	-	-	-					
Source of Hydrology	-	-	-					
Hydrologic Impairment	-	-	-					
Native vegetation community	-	-	-					
Percent composition of exotic invasive vegetation	-	-	-					
Regulatory Considerations								
Regulation	Applicable?	Resolved?	Supporting Documentation					
Waters of the United States – Section 404	Yes	To Be Permitted						
Waters of the United States – Section 401 Yes To Be Permitted								
Endangered Species Act	No	N/A	ERTR					
Historic Preservation Act	No	N/A	ERTR					
Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)	No	N/A						
FEMA Floodplain Compliance	Yes	Pending CLOMR Submittal						
Essential Fisheries Habitat No		N/A						

5.0 DETERMINATION OF CREDITS

Mitigation credits presented in these tables are projections based upon site design. Upon completion of site construction the project components and credits data will be revised to be consistent with the as-built condition.

				Middle	South Mudd EEP Project	y Cree No: 9	k, McDo 3875	well				
					Mitigatior	n Credi	ts					
	Stream Riparian Wetland		Wetland	Non-riparian Wetland		/etland	Buffer		Nitrogen Nutrient Offset		Phosphorous Nutrient Offset	
Туре	R	RE	R	RE	R		RE					
Totals	2114	1167										
			-		Project Co	mpone	nts					
Project Component or Reach ID		Sta	tationing/Location		Existing Footage/Acr	eage	Approach (PI, PII etc.)		Restoration Restoration Equivalent	-or-	Restoration Footage or Acreage	Mitigation Ratio
South Mudd	y Creek		101+00 - 11	2+61	931	0		PII	R		916	1:1
Lower South M	uddy Creek		110+91 – 11	2+61	177			EI	R		171	1.5:1
Upper Sprous	e Branch		201+50 – 20	1+74	24			EII	R		24	2.5:1
Middle and Lower S	prouse Branc	h	201+74- 20	8+04	598			PII	R		611	1:1
Iva Brar	nch		302+14 – 306+96		471			PI R			463	1:1
Haney T	ract				5836		Prese	rvation	RE		5836	5:1
					Component	Summ	ation					
Restoration Level Stream (linear feet)		am feet)	Riparian Wetla (acres)		Wetland es)	Vetland Non-riparian Wetlan (acres)		Wetland	Buffer (square feet)		et)	Upland (acres)
Riveri		erine	Non-Riverine									
Restoration 1990												
Enhancement												
Enhancement I	17	'1										
Enhancement II 24												
Creation												
Preservation	583	36										
High Quality Preservation												
					BMP Ele	ements	;					
Element	lement Location Purpose/Function Notes											
FB	B Entire Site Protect Stream Channel											
BMP Elements	· SE - Sond Fil	tor: SM	- Stormwata	r Wotlon		Doton	tion Don	- <u>חחח</u>		Done	li EQ - Filtor Q	

BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer

6.0 Credit Release Schedule

All credit releases will be based on the total credit generated as reported by the as-built survey of the mitigation site. Under no circumstances shall any mitigation project be debited until the necessary DA authorization has been received for its construction or the District Engineer (DE) has otherwise provided written approval for the project in the case where no DA authorization is required for construction of the mitigation project. The DE, in consultation with the Interagency Review Team (IRT), will determine if performance standards have been satisfied sufficiently to meet the requirements of the release schedules below. In cases where some performance standards have not been met, credits may still be released depending on the specifics of the case. Monitoring may be required to restart or be extended, depending on the extent to which the site fails to meet the specified performance standard. The release of project credits will be subject to the criteria described as follows:

Forested Wetlands Credits					
Monitoring Year	Credit Release Activity	Interim Release	Total Released		
0	Initial Allocation – see requirements above	30%	30%		
1	First year monitoring report demonstrates performance standards are being met	10%	40%		
2	Second year monitoring report demonstrates performance standards are being met	10%	50%		
3	Third year monitoring report demonstrates performance standards are being met	10%	60%		
4	Fourth year monitoring report demonstrates performance standards are being met	10%	70%		
5	Fifth year monitoring report demonstrates performance standards are being met; Provided that all performance standards are met, the IRT may allow the NCEEP to discontinue hydrologic monitoring after the fifth year, but vegetation monitoring must continue for an additional two years after the fifth year for a total of seven years.	10%	80%		
6	Sixth year monitoring report demonstrates performance standards are being met	10%	90%		
7	Seventh year monitoring report demonstrates performance standards are being met, and project has received close-out approval	10%	100%		

Non-forested Wetlands Credits					
Monitoring Year	Credit Release Activity	Interim Release	Total Released		
0	Initial Allocation – see requirements above	30%	30%		
1	First year monitoring report demonstrates performance standards are being met	10%	40%		
2	Second year monitoring report demonstrates performance standards are being met	15%	55%		
3	Third year monitoring report demonstrates performance standards are being met	20%	75%		
4	Fourth year monitoring report demonstrates performance standards are being met	10%	85%		
5	Fifth year monitoring report demonstrates performance standards are being met and project has received closeout approval	15%	100%		

Stream Credits					
Monitoring Year	Credit Release Activity	Interim Release	Total Released		
0	Initial Allocation – see requirements above	30%	30%		
1	First year monitoring report demonstrates performance standards are being met	10%	40%		
2	Second year monitoring report demonstrates performance standards are being met	10%	50% (65%*)		
3	Third year monitoring report demonstrates performance standards are being met	10%	60% (75%*)		
4	Fourth year monitoring report demonstrates performance standards are being met	10%	70% (85%*)		
5	Fifth year monitoring report demonstrates performance standards are being met and project has received closeout approval	15%	100%		

6.1 Initial Allocation of Released Credits

The initial allocation of released credits, as specified in the mitigation plan can be released by the NCEEP without prior written approval of the DE upon satisfactory completion of the following activities:

- a. Approval of the final Mitigation Plan
- b. Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property
- c. Completion of project construction (the initial physical and biological improvements to the mitigation site) pursuant to the mitigation plan; Per the NCEEP Instrument, construction means that a mitigation site has been constructed in its entirety, to include planting, and an as-built report has been produced. As-built reports must be sealed by an engineer prior to project closeout, if appropriate but not prior to the initial allocation of released credits.
- d. Receipt of necessary DA permit authorization or written DA approval for projects where DA permit issuance is not required.

6.2 Subsequent Credit Releases

All subsequent credit releases must be approved by the DE, in consultation with the IRT, based on a determination that required performance standards have been achieved. For stream projects a reserve of 15% of a site's total stream credits shall be released after two bank-full events have occurred, in separate years, provided the channel is stable and all other performance standards are met. In the event that less than two bank-full events occur during the monitoring period, release of these reserve credits shall be at the discretion of the IRT. As projects approach milestones associated with credit release, the NCEEP will submit a request for credit release to the DE along with documentation substantiating achievement of criteria required for release to occur. This documentation will be included with the annual monitoring report.

7.0 MITIGATION WORK PLAN

7.1 Description of Target Stream and Vegetation Communities

Reference reaches were sought to provide a target for design of the proposed streams. Searches were conducted first upstream and downstream of the Site and then into surrounding watersheds to find suitable references that contained comparable slope, bed material, and valley type. A Type C4 reference was located on Toms Creek, a tributary of the Catawba River in McDowell County and a Type B4 reference was located on Cold Springs Creek, a tributary to the Pigeon River in Haywood County. The reference vegetation community data were collected at the Toms Creek reference site.

7.1.1 Reference Reach

The reference reaches were selected to represent the probable configurations for the proposed stream restoration. Detailed geomorphic survey and Level II Rosgen classification were conducted on each reference reach (See Appendix C).

Toms Creek Reference

The Toms Creek reference reach is located in the Blue Ridge hydrophysiographic region of North Carolina. The watershed for Toms Creek reference is similar to the character of the South Muddy Creek watershed including average annual rainfall, elevation changes, and valley type. The reference watershed is located northwest of the project site within Pisgah National Forest and is predominantly forested. The drainage area for the Toms Creek reference is 3.33 mi².

The Toms Creek reach is representative of a C4 channel in a moderately sloped valley. Bed material, channel slope, and valley form of this stream are consistent with the Site and provide reasonable analogues for the potential channel forms that can be expected at the Site. The Toms Creek reference reach has a D_{50} of 31mm, D_{84} of 71mm, channel slope of 0.93 % and width/depth ratio of 15.

Cold Springs Reference

The Cold Springs Creek reference reach is located in the Blue Ridge hydrophysiographic region of North Carolina. The watershed is similar in many ways to the character of the Site watershed including average annual rainfall, elevation changes, and valley type. However, the two tributaries on the project site are sand bed streams with moderate gradient valleys (2%-5%) and a similar stream in reference condition was not identified. The Cold Springs Creek reference represents a stable stream type with a gravel bed in a similar valley type and slope. The reference watershed is rural and consists predominantly of forest stands with some grassy fields although there are no livestock on the adjacent land. The drainage area for the Cold Springs Creek reference is 2.77 mi².

The Cold Springs reach is representative of a B4 channel in a moderately sloped valley with a narrow, constrained floodplain. Channel slope, and valley form of this stream are consistent with the project site and provide reasonable analogues for the potential channel forms that can be expected at the Site. The Cold Springs reference reach has a D_{50} of 45mm, D_{84} of 130mm, channel slope of 0.024 ft/ft, and width/depth ratio of 16.

Discharge and Bankfull Verification

Bankfull was readily identified on the reference streams as they exhibited consistent indicators throughout the reach. Verification of bankfull was accomplished by plotting the bankfull cross sectional area against the regional curve data. The graph indicates that the bankfull identified in the surveyed reach is consistent with the regional curve data.

After verification of bankfull cross sectional area, bankfull discharge was calculated for the surveyed reach using a single-section analysis. Manning's 'n' was estimated from relative roughness calculations of the bed material and from observation of the channel flow conditions. Water surface slope was assumed to be consistent with the slope of the bed profile. Discharge was then plotted against a graph of the regional curve data. The graphing of this data indicated that the calculated bankfull discharges were consistent with the regional curve data.

Channel Stability Assessment

A detailed channel stability assessment was not performed for these reaches since the bank and bed stability were obvious from observation. Subsequent review of the surveyed dimensions confirmed that width-depth ratios and bank height ratios were within the appropriate range for stable, self-maintaining streams. Additional observations included significant upstream and downstream reconnaissance to identify any past, present, or future signs or sources of degradation.

Limited Reach Reference

Through the course of conducting the reference reach searches, several streams were identified as possessing qualities of stability and natural form. However, these reaches were determined not to be suitable references for the project due to either incompatible stream type, valley form, or insufficient reach length. In these locations morphological measurements were taken to supplement the data acquired from the reference reach sites. Measurements on eight (8) individual reaches included bankfull width, bed width, depth of bankfull, toe depth, and width of thalweg. A graph of this data is included in Appendix C.

7.1.2 Reference Vegetation Community

The plant community survey was performed at Toms Creek on July 6, 2011. The riparian plant community most closely resembles a *Montane Alluvial Forest* as described by Schafale and Weakley (1990). Canopy species observed included Sycamore (*Platanus occidentalis*), Green Ash (*Fraxinus pennsylvanica*), American Beech (*Fagus grandifolia*), River Birch (*Betula nigra*), White Oak (*Quercus alba*), Black Oak (*Quercus velutina*), Red Maple (*Acer rubrum*), and Tulip Poplar (*Liriodendron tulipifera*). Subcanopy species included Spicebush (*Lindera benzoin*), American holly (*Ilex opaca*), iron wood (*Carpinus caroliniana*), and witch hazel (*Hamamelis virginiana*). Herbaceous species included Christmas Fern (*Polystichum acrostichoides*), Dog Hobble (*Leucothoe fontanesiana*), New York Fern (*Thelyptris novaboracensis*), Virginia Creeper (*Parthenocissus quinquefolia*), and Yellowroot (*Xanthorhiza simplicissima*).

7.2 Narrative of Design Parameters

South Muddy Creek

South Muddy Creek will be designed as a Type C4 stream with moderate sinuosity. Priority II Restoration will be implemented with the intent being to create a stable channel with a floodplain capable of conveying storm flows and routing the moderately high sediment loads supplied by the watershed. The presence of an existing bridge in the middle of project requires that the floodplain bench be transitioned at the approach and exiting of the channel. Generally, the channel appears to be vertically stable; therefore, only minor adjustment will be made to the profile which will include re-establishment of proper riffle-pool sequence and installation of in-stream log and brush structures. Reference data will provide the basis for pattern and dimension adjustments, and a new floodplain bench will be excavated below the existing terrace. Existing topsoil will be salvaged for use on the floodplain bench to facilitate vegetation success.

Sprouse Branch

The upper reach of Sprouse Branch has a mature forested canopy and channel instabilities are minor. Enhancement (EII) is proposed for this reach. It is anticipated that the exclusion of livestock from the area will greatly reduce erosion and instability within this reach. Enhancement efforts will include the installation of a grade control at the spring head to prevent further headcut migration. Supplemental plantings will be used to treat existing bare banks. Enhancement activities will be minimally invasive to provide for the protection of mature riparian buffer.

Middle Sprouse Branch and Lower Sprouse Branch are designed as Type B5 and Type B5c channels, respectively. As Sprouse Branch exits the upper forested reach and flows into the pasture, the moderately high gradient (3%) warrants the installation of rock grade-control structures to stabilize the vertical profile. As Sprouse Branch intersects the valley of South Muddy Creek, the gradient decreases (1.8%), resulting in a transition to a Type B5c stream. In both cases, construction of a stream profile that is consistent with the valley gradient would be unstable for the sand bed material supplied by the watershed. In order to accommodate the steeper valley gradient a terraced profile is proposed with intermediate slopes of less than 0.2%. Dimension adjustments will include an increase in width/depth

ratio to reduce the stress on channel banks, and the excavation of a floodplain bench to provide for the conveyance of flood flows. Existing topsoil will be salvaged for use on the floodplain bench to facilitate vegetation success.

Iva Branch

Upper Iva Branch is a candidate for Priority I Restoration which will involve filling the existing incised valley to raise the channel as much as eight (8) feet. Material from the excavation of South Muddy Creek will be used to fill the valley and the woody material in the gully will be salvaged for use throughout the rest of the project. The fill material will be placed in no greater than 2-ft lifts and compacted to in situ soil densities. The constructed channel will be designed as a Type B5 stream and will be vertically stabilized through the installation of rock structures.

The short reach comprising Lower Iva Branch traverses the South Muddy Creek Valley and is designed as a Type B5c channel. Profile, pattern, and dimension shall be adjusted to provide for proper pool spacing, riffle-pool sequence, and reductions of stress along stream banks. A bankfull bench shall be constructed to provide for proper conveyance of greater-than-bankfull flows. Log and rock structures will be installed to control vertical alignment and provide aquatic habitat. In order to accommodate the steeper gradient of the valley, a terraced profile is proposed with intermediate slopes of less than 0.2%.

Vegetation

In order to address potential poor soil conditions on the graded bench and floodplain, EEP may plant a mixture of leguminous and grassy cover crop species to add organic matter and fix nitrogen in the soil. Cover crops will be disked into the soil after construction to incorporate the biomass and attempt to avoid dominance of the site by these species. In addition, a combination of containerized woody plants and tolerant bare roots will be planted in these sensitive areas.

Haney Tract

The Haney Tract will be established as a preservation site to protect and buffer the existing stream. The network of dirt roads that occur throughout this tract will be barricaded in strategic locations to prevent future vehicular access. The barricades will be constructed of boulders and large diameter tree trunks.

7.3 Narrative of Data Analysis

Hydraulic Analysis

The proposed channel sections were evaluated for their ability to convey the bankfull flows and the flood flows (2Yr, 10Yr, 50Yr, 100Yr) of the watershed by performing a hydraulic analysis. Bankfull discharge was determined from the revised North Carolina mountain and piedmont regional curve (NRCS) and flood flow discharges were taken from the existing FEMA model. The analysis consisted of first modeling the existing conditions with the HEC-RAS water surface profile model. Cross sections were taken through the channel and the adjacent valley at representative locations throughout the project reach. Existing hydraulic conditions were evaluated and the model calibrated based on available site data including the presence of rack lines and testimony of past flooding from local residences. Proposed conditions were analyzed by revising the existing sections based on the proposed channel geometry and by revising the model to reflect proposed pattern conditions and anticipated future roughness coefficients. Comparison of the existing and proposed HEC-RAS models provided assistance in the analysis of the sediment transport, bankfull flow capacity, and confirmation that there will be no hydraulic trespass onto adjacent properties.

FEMA Results

South Muddy Creek is a limited detail study stream. The HEC-RAS model of the 100-yr event indicates no appreciable increase in the water surface elevation within or upstream of the project. However, there is a 0.1' rise in one section upstream of the site and there is a significant decrease in the water surface elevation upstream of the bridge that may require a CLOMR submittal. This determination will be subject to review of the floodplain manager.

Sediment Competence Analysis

The design sections were evaluated for competence to transport the sediment supplied by the watershed. Critical shear stress was calculated for bankfull discharge for each design section and related to particle sizes expected to be mobilized. These predicted particle sizes were compared to the caliber of the bed material found in the existing channels. The material composing the bed of existing South Muddy Creek consists of particles with a D_{50} of 19 mm and a D_{max} of 57 mm. The proposed channel was designed by calculating threshold conveyance for the maximum mobile particle and the representative particle size. Bed material in existing Sprouse and Iva Branch is composed of primarily of sand and silt particles and shear stress calculations suggest that profile slopes less than 0.2 % are required for bed stability (See Appendix C for sediment transport calculations).

Sediment Capacity Evaluation

The design configuration was evaluated for sediment transport capacity by assessing continuity and magnitude of stream power. Stream power was determined from the HEC-RAS modeling for a range of events greater than bankfull (2Yr, 10Yr, 50Yr, 100Yr) and comparisons were made with existing and proposed conditions. Results indicate that maintaining stream power values above 1.0 are necessary to provide for capacity continuity and to accommodate the moderately high bed loads of the channel. The model indicates that a spike in stream power will result at the upstream end (section 64854.66) from the construction of the restored channel. The risk of adverse effects will be greatest in the first two years following construction with risk diminishing as vegetation on the banks increase channel roughness. Several channel configurations were evaluated in an attempt to reduce this effect. However, none demonstrated a significant advantage over the design section. Additionally, flood plain pipes were evaluated to improve floodplain performance. The model results indicated that floodplain pipes will have only a marginal effect and may in some instances negatively influence sediment conveyance. Given these results along with the cost of installation and presence of timber retaining walls on the bridge approach; floodplain pipes are not recommended on this site.

Sediment capacity calculations were not performed on Iva Branch or Sprouse Branch since both streams have low sediment supply. Stability issues associated with sediment transport on low sediment supply streams are focused on providing the correct balance with respect to sediment transport competence.

8.0 MAINTENANCE PLAN

NCEEP shall monitor the site on a regular basis and shall conduct a physical inspection of the site a minimum of once per year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following site construction and may include the following:

Component/Feature	Maintenance through project close-out
Stream	Routine channel maintenance and repair activities may include
	chinking of in-stream structures to prevent piping, securing of loose
	coir matting, and supplemental installations of live stakes and other
	target vegetation along the channel. Areas where stormwater and
	floodplain flows intercept the channel may also require
	maintenance to prevent bank failures and head-cutting.
Wetland	Routine wetland maintenance and repair activities may include
	securing of loose coir matting and supplemental installations of live
	stakes and other target vegetation within the wetland. Areas where
	stormwater and floodplain flows intercept the wetland may also
	require maintenance to prevent scour.
Vegetation	Vegetation shall be maintained to ensure the health and vigor of the
	targeted plant community. Routine vegetation maintenance and
	repair activities may include supplemental planting, pruning,
	mulching, and fertilizing. Exotic invasive plant species shall be
	controlled by mechanical and/or chemical methods. Any vegetation
	control requiring herbicide application will be performed in
	accordance with NC Department of Agriculture (NCDA) rules and
	regulations.
Site Boundary	Site boundaries shall be identified in the field to ensure clear
	distinction between the mitigation site and adjacent properties.
	Boundaries may be identified by fence, marker, bollard, post, tree-
	blazing, or other means as allowed by site conditions and/or
	conservation easement. Boundary markers disturbed, damaged, or
	destroyed will be repaired and/or replaced on an as needed basis.
Utility Right-of-Way	Utility rights-of-way within the site may be maintained only as
	allowed by Conservation Easement or existing easement, deed
	restrictions, rights of way, or corridor agreements.
Ford Crossing	Ford crossings within the site may be maintained only as allowed
_	by Conservation Easement or existing easement, deed restrictions,
	rights of way, or corridor agreements.
Road Crossing	Road crossings within the site may be maintained only as allowed
_	by Conservation Easement or existing easement, deed restrictions,
	rights of way, or corridor agreements.
Stormwater Management Device	Storm water management devices will be monitored and
, v	maintained per the protocols and procedures defined by the NC
	Division of Water Quality Storm Water Best Management Practices
	Manual.

9.0 PERFORMANCE STANDARDS

9.1 Morphologic Parameters and Channel Stability

Restored and enhanced streams should demonstrate morphologic stability to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is also to be expected. If some trend is evident, it should be very modest or indicate migration to another stable form.

Dimension

Cross-section measurements should indicate little change from the as-built cross-sections. If changes do occur, they will be evaluated to determine whether the adjustments are associated with increased stability or whether they indicate movement towards an unstable condition.

Pattern and Profile

Measurements and calculated values should indicate stability with little deviation from as-built conditions and established morphological ranges for the restored stream type. Annual measurements should indicate stable bed-form features with little change from the as-built survey. The pools should maintain their depth with flatter water surface slopes, while the riffles should remain shallower and steeper.

Substrate

Calculated D_{50} and D_{84} values should indicate coarser size class distribution of bed materials in riffles and finer size class distribution in pools. Generally, it is anticipated that the bed material will coarsen over time.

Sediment Transport

Depositional features should be consistent with a stable stream that is effectively managing its sediment load. Point bar and inner berm features, if present, should develop without excessive encroachment of the channel. Lateral and mid-channel bar features should typically not be present and if so only in isolated instances. Bar features may be more prevalent in sand bed channels but should be transient in nature and should occupy no more than 20% of the cross sectional area.

9.2 Vegetation

Riparian vegetation monitoring shall be conducted for a minimum of five years to ensure that success criteria are met per USACE guidelines. Accordingly, success criteria will consist of a minimum survival of 320 stems per acre by the end of the Year 3 monitoring period and a minimum of 260 stems per acre at the end of Year 5. If monitoring indicates either that the specified survival rate is not being met or the development of detrimental conditions (i.e., invasive species, diseased vegetation), appropriate corrective actions will be developed and implemented.
10.0 MONITORING REQUIREMENTS

Annual monitoring data will be reported using the EEP monitoring template. The monitoring report shall provide a project data chronology that will facilitate an understanding of project status and trends, population of EEP databases for analysis, research purposes, and assist in decision making regarding project close-out.

Required	Parameter	<u>Quantity</u>	<u>Frequency</u>	Notes
NO	Pattern			
		As per April 2003 USACE		
		Stream Mitigation		
YES	Dimension	Guidelines	annual	
		As per April 2003 USACE		
		Wilmington District		
VEO	Drofile	Stream Mitigation	a manual	
TES	Profile		annuai	
		Wilmington District		
		Stream Mitigation		
YES	Substrate	Guidelines	annual	
		As per April 2003 USACE		A Crest Gauge will be installed on site; the device
	Curfe ee Mieter	Wilmington District		will be inspected on a semi-annual basis to
YES	Surface water	Guidelines	annual	project
	riyarology		annaar	Groundwater monitoring gauges with data recording
		Quantity and location of		devices will be installed on site; the data will be
	Groundwater	gauges will be determined		downloaded on a monthly basis during the growing
NO	Hydrology	in consultation with EEP	annual	season
		Quantity and location of		
		determined in consultation		Vegetation will be monitored using the Carolina
YES	Vegetation	with FFP	annual	Vegetation Survey (CVS) protocols
	Exotic and nuisance		unnuu	Locations of exotic and nuisance vegetation will be
YES	vegetation		annual	mapped
			Semi-	Locations of fence damage, vegetation damage,
YES	Project boundary		annual	boundary encroachments, etc. will be mapped

11.0 LONG-TERM MANAGEMENT PLAN

Upon approval for close-out by the Interagency Review Team (IRT) the site will be transferred to NCDENR or other IRT-approved stewardship entity. This party shall be responsible for periodic inspection of the site to ensure that restrictions required in the conservation easement or the deed restriction document(s) are upheld. Endowment funds required to uphold easement and deed restrictions shall be negotiated prior to site transfer to the responsible party.

The NCDENR Division of Natural Resource Planning and Conservation's Stewardship Program currently houses EEP stewardship endowments within the non-reverting, interest-bearing Conservation Lands Stewardship Endowment Account. The use of funds from the Endowment Account is governed by North Carolina General Statute GS 113A-232(d)(3). Interest gained by the endowment fund may be used only for the purpose of stewardship, monitoring, stewardship administration, and land transaction costs, if applicable. The NCDENR Stewardship Program intends to manage the account as a non-wasting endowment. Only interest generated from the endowment funds will be used to steward the compensatory mitigation sites. Interest funds not used for those purposes will be re-invested in the Endowment Account to offset losses due to inflation.

12.0 ADAPTIVE MANAGEMENT PLAN

Upon completion of site construction EEP will implement the post-construction monitoring protocols previously defined in this document. Project maintenance will be performed as described previously in this document. If, during the course of annual monitoring it is determined the site's ability to achieve site performance standards are jeopardized, EEP will notify the USACE of the need to develop a Plan of Corrective Action. The Plan of Corrective Action may be prepared using in-house technical staff or may require engineering and consulting services. Once the Corrective Action Plan is prepared and finalized EEP will:

- 1. Notify the USACE as required by the Nationwide 27 permit general conditions.
- 2. Revise performance standards, maintenance requirements, and monitoring requirements as necessary and/or required by the USACE.
- 3. Obtain other permits as necessary.
- 4. Implement the Corrective Action Plan.
- 5. Provide the USACE a Record Drawing of Corrective Actions. This document shall depict the extent and nature of the work performed.

13.0 FINANCIAL ASSURANCES

Pursuant to Section IV H and Appendix III of the Ecosystem Enhancement Program's In-Lieu Fee Instrument dated July 28, 2010, the North Carolina Department of Environment and Natural Resources has provided the U.S. Army Corps of Engineers Wilmington District with a formal commitment to fund projects to satisfy mitigation requirements assumed by EEP. This commitment provides financial assurance for all mitigation projects implemented by the program.

14.0 OTHER INFORMATION

14.1 DEFINITIONS

Morphological description – the stream type; stream type is determined by quantifying channel entrenchment, dimension, pattern, profile, and boundary materials; as described in Rosgen, D. (1996), *Applied River Morphology, 2nd edition*

Native vegetation community – a distinct and reoccurring assemblage of populations of plants, animals, bacteria and fungi naturally associated with each other and their population; as described in Schafale, M.P. and Weakley, A. S. (1990), *Classification of the Natural Communities of North Carolina, Third Approximation*

Project Area - includes all protected lands associated with the mitigation project

14.2 REFERENCES

Faber-Langendoen, D., Rocchio, J., Schafale, M., Nordman, C., Pyne, M., Teague, J., Foti, T., Comer, P. (2006), *Ecological Integrity Assessment and Performance Measures for Wetland Mitigation*. NatureServe, Arlington, Virginia.

Lindenmayer, D.B., and J.F. Franklin. (2002), *Conserving forest biodiversity: A comprehensive multiscaled approach.* Island Press, Washington, DC.

North Carolina Geological Survey, 1985. Geologic Map of North Carolina. North Carolina Department of Natural Resources and Community Development, Raleigh, NC.

Peet, R.K., Wentworth, T.S., and White, P.S. (1998), *A flexible, multipurpose method for recording vegetation composition and structure*. Castanea 63:262-274

Pope, B.F., Tasker, G.D. 1999, Estimating the magnitude and frequency of floods in rural basins of North Carolina. U.S. Geological Survey Water Resources Investigations Report 99-4114. U.S. Geological Survey, Raleigh, NC.

Rosgen, D. (1996), Applied River Morphology, 2nd edition, Wildland Hydrology, Pagosa Springs, CO

Schafale, M.P. and Weakley, A. S. (1990), *Classification of the Natural Communities of North Carolina, Third Approximation,* NC Natural Heritage Program, Raleigh, NC

Stream Mitigation Guidelines, April 2003, US Army Corps of Engineers Wilmington District

Young, T.F. and Sanzone, S. (editors). (2002), *A framework for assessing and reporting on ecological condition*. Ecological Reporting Panel, Ecological Processes and Effects Committee. EPA Science Advisory Board. Washington, DC.

APPENDIX A SITE PROTECTION INSTRUMENT(S)

CERTIFICATE OF OWNERSHIP AND DEDICATION:	I FGFND.
HEREBY CERTIFY THAT I AM THE OWNER OF THE PROPERTY AS SHOWN AND DESCRIBED HEREON. I ALSO HEREBY ACCEPT AND ADOPT THIS RECORD PLAT AND CONSERVATION ASEMENT WITH MY FREE CONSENT AND DEDICATED ALL ASEMENTS, RIGHT OF WAYS AND ACCESS ROADS TO PUBLIC AND/OR PRIVATE USE AS NOTED ON SAID PLAT.	 CALCULATED POINT (NOT SET) CALCULATED POINT (NOT SET) EXISTING IRON PIN (3/4" IR EXISTING IRON PIN (3/4" IR UNLESS OTHERWISE STATED) CONSERVATION EASEMENT CORNER CONSERVATION EASEMENT CORNER CONSERVATION EASEMENT CORNER CONSERVATION EASEMENT CORNER RIGHT OF WAY (R/W)
ARRY L. SPROUSE DATE	■ NCGS MONUMENT ——X—— FENCE LINE UTILITY POLE0w OVERHEAD WIRE →/ NOT TO SCALE (NTS)T UNDERGROUND TELEPHONE (APPROX.) 37101/1001/000 STRFAM
IORA S. WORTHEN DATE	IP IRON PIPE IR IRON ROD RRS RAILROAD SPIKE CC CONTROL CORNER CNR CORNER CNR CORNER CORNER CORNER CORNER CORNER CRAVEL
RICHARD D. WORTHEN, JR. DATE	DB: DEED BOOK PC: PAGE PB: PLAT BOOK CMP CORRUGATED METAL PIPE SR STATE ROAD SR STATE ROAD SPC STATE PLANE COORDINATES
ARL B. SPROUSE DATE	CNF CORNER NOT FOUND POB POINT OF BEGINNING PL PROPERTY LINE 0/S OFFSET
VA A. SPROUSE DATE	1/2" IR SEE PB: 20 PG: 90
	(183.98') (1/2" IR L1 S 00'12'30" W 75.44' L2 S 07'59'11" W 77.85' L3 S 10'56'55" W 89.61'
	L4 S 10°53'17" W 57.89' L5 N 82°03'43" W 75.19' L6 S 00°58'15" E 158.00' L7 S 79°33'38" E 60.02' L8 S 24°38'10" W 86.98'
	L3 N 703104 W 31.12 L10 S 04"53"52" W 149.63" L11 N 77"34"40" W 109.45" L12 N 12"45"41" E 99.21" L13 S 79"42"36" E 157.25" L14 S 68"17"15" E 257.77"
	L15 S 50°04'39" E 118.66' L16 N 83°27'10" W 73.82' L17 N 51°54'08" W 74.52' L18 N 77'47'05" W 54.72'
	LI3 N 70.32 04 W 00.33 L20 N 67'33'36" W 41.05' L21 S 00'43'03" W 68.12' L22 N 24'38'10" E 90.12' L23 S 21'12'55" W 60.34' L24 N 70'51'05" W 300'44'
	L25 S 04*54'11" W 267.32' L26 S 68*43'33" E 31.09' L27 S 32*13'24" W 82.03' L28 N 74*03'17" W 48.52'
	L29 S B1'25'33" W 52.45' L30 N 11'15'34" E 118.29' L31 S 77'34'40" E 118.53' L32 S 43°58'15" E 119.56' L33 S 20'38'30" F 177.08'
	L34 N 32*13*24" E 82.02* L35 N 05*47*25" W 60.71" L36 N 14*59*01" E 82.27" L37 N 44*52*51" E 53.06"
	L38 N 16'48'33" E 19.57' L39 N 08"29'18" W 46.05' L40 N 13'38'56" E 46.28' L41 N 14'47'04" E 45.79' L42 S 04"99'46" F 80.94'
	LEO DONALD BREVARD L45 N 04*28'36" W 132.71' LEO DONALD BREVARD L44 N 17*01'27" E 142.23' REVOCABLE TRUST L45 S 88*29'32" E 17.88' PIN:<
	DB: 795 PG: 498 L48 S 04°53'39" W 75.65' L49 S 68°49'29" E 20.38' L50 S 77°27'37" W 78.06' L51 S 76°50'49" W 27.81'
	L52 N 09'01'30" W 96.77' L53 N 06'04'50" W 96.95' L54 N 17'39'38" W 75.88' L55 N 20'02'46" W 31.56' L56 N 42'18'36" W 26.51'
L. REEL AND ANN SPROUSE REEL	L57 N 07*29'54" W 34.30' L58 N 00*43'03" E 30.16' L59 N 17'10'18" W 157.55'
385 PG: 422	A CONSERVATION EASEMENT SURVEY FOR:
100' 200' 300' MC GRID	THE STATE OF NORTH CAROLINA, NC DEPARTMENT OF ADMINISTRATION.
H=ONE HUNDRED FEET	ECOSYSTEM ENHANCEMENT PROGRAM, MIDDLE SOUTH MUDDY CREEK
URVEYOR'S NOTES: ENTS IN 7. INTERIOR ROADBEDS AND TRAILS WERE LOCATI	ED FILE NUMBER: 059–A0, 059–AN, & 059–AT EEP PROJECT ID: 93875
TED. USING HAND HELD GPS UNITS AND THEY DO NOT MEET THE REQUIREMENTS AS SET FORTH : METHOD. THE CERTIFICATE OF SURVEY AND ACCURACY. RIGHT OF 8. BY GRAPHIC DETERMINATION, A PORTION OF T ORDED, 8. BY GRAPHIC DETERMINATION, A PORTION OF T	IN LARRY L. SPROUSE NORA S WORTHEN AND HUSBAND RICHARD D. WORTHEN THE EARL B. SPROUSE AND WIFE, IVA, A. SPROUSE
DIDENTIFY BY THE F.E.M.A. MAP # 3710162600J DATED 0CTOBER 2, 2008.	NED 1637-00-13-2331, 1637-00-03-3441, & 1637-00-13-0051 DEED REFERENCES:
E NU 9. UTILITIES WERE LOCATED BASED ON VISIBLE A FOR GROUND STRUCTURES, THEREFORE THE LOCATI NCES, OF UNDERGROUND UTILITIES ARE APPROXIMATE ERSHIP MAY BE PRESENT AND NOT SHOWN HEREON. (ATE AND 1-800-632-4949 BEFORE DIGGING.	ABOVE DB: 183 PG: 317, DB: 618 PG: 732, & DB: 383 PG: 406 FION BRACKETTS TOWNSHIP, MCDOWELL COUNTY, NORTH CAROLINA E OR CALL SURVEY BY: RIP,RMT,NH,KJ, DRAWN BY: PBK SCALE: 1"=100' SURVEY DATES: 05/15/11-09/26/11 JOB #110652-SPROUSE
TED. 10. BOUNDARY LINES NOT SURVEYED ARE INDICAT AS DASHED LINES AND WERE TAKEN FROM AN DERIVED UNRECORDED SURVEY FOR THE "J.J. SPROUSE RVATIONS PROPERTY"; PREPARED BY: KENNETH D. SUTT TIAL DATED: MARCH 8, 1988; FILE #: 10074.	rLes;
TATIC 11. ALL EXISTING FENCES WITHIN THE CONSERVATI TATIC EASEMENT AREAS ARE TO BE REMOVED. 3 RECEIVERS.	MAPPING & SURVEYING LICENSE # C-3039

06 age

APPENDIX B BASELINE INFORMATION DATA

3/22/2011 WP4	Trojecuone. M	Muddy Br.		10.10	
Evaluator: S. Melton / K. Mitchell	County: McOovell		Longitude: - 81.92179		
Total Points: Stream is at least intermittent ≥ 19 or perennial if ≥ 30*	Stream Determination (circle one)OtherEphemeral Intermittent Perenniale.g. Quad National		Other e.g. Quad Name:	ne:	
. Geomorphology (Subtotal = 1/2)	Absent	Weak	Moderate	Strong	
^a Continuity of channel bed and bank	0	1	2	3	
. Sinuosity of channel along thalweg	0	1	2	3	
. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3	
. Particle size of stream substrate	0	1	2	3	
. Active/relict floodplain	0	1	(2)	3	
. Depositional bars or benches	0	1	2	3	
. Recent alluvial deposits	0	1	2	3	
. Headcuts	0	1	2	3	
. Grade control	0	0.5	1	1.5	
0. Natural valley	0	0.5	1	1.5	
1. Second or greater order channel	No	= 0	Yes	= 3	
artificial ditches are not rated; see discussions in manual 3. Hydrology (Subtotal = $\frac{1}{\lambda}$)					
2. Presence of Baseflow	0	1	2	3	
3. Iron oxidizing bacteria	0	1	2	(3)	
4. Leaf litter	1.5	1	0.5	0	
5. Sediment on plants or debris	0	0.5	1	1.5	
6. Organic debris lines or piles	0	0.5	1	1.5	
7. Soil-based evidence of high water table?	No	= 0	Yes = (3)		
C. Biology (Subtotal =o)					
8. Fibrous roots in streambed	3	2	1	0	
9. Rooted upland plants in streambed	3	2	1	0	
0. Macrobenthos (note diversity and abundance)	Ø	(1)	2	3	
1. Aquatic Mollusks	Ø	1	2	3	
2. Fish	Ó	0.5	1	1.5	
3. Crayfish	0	0.5	1	1.5	
4. Amphibians	(Ò)	0.5	1	1.5	
5. Algae	Ô	0.5	1	1.5	
6. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = 0)	
perennial streams may also be identified using other metho	ds. See p. 35 of manual				
lotes:					

Evaluator: S. Melton / K. Mitchell	County: $M_{cO_{s}}$	ounty: McDenell		Longitude: -81.92156	
Total Points:Stream is at least intermittent if \geq 19 or perennial if \geq 30*	Stream Determination (circle one)OtherEphemeral Intermittent Perenniale.g. Quad Name:				
A. Geomorphology (Subtotal = 105_)	Absent	Weak	Moderate	Strong	
1 ^a Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	$\widehat{1}$	2	3	
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	0	2	3	
4. Particle size of stream substrate	(0)	1	2	3	
5. Active/relict floodplain	0	(1)	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	(Q)	1	2	3	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	(1)	1.5	
11. Second or greater order channel	No	=(0)	Yes = 3		
B Hydrology (Subtotal = 5)					
12 Presence of Baseflow	0	1	2	(3)	
13. Iron ovidizing bacteria	0	1	2	3	
14 Leaf litter	1.5	1	<u> </u>	0	
15. Sediment on plants or debris	Ô	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	=0	Yes =	3	
C Biology (Subtotal = $\frac{1}{2}$					
	3	2	1	0	
18. Fibrous roots in streambed	U U	2			
18. Fibrous roots in streambed 19. Rooted upland plants in streambed	3	(2)	1	0	
18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance)	3	(<u>2</u>) 1	2	0	
18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks	3 (0) (0)	(2) 1 1	1 2 2	0 3 3	
18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish	3 (0) (0) (0)	(2) 1 1 0.5	1 2 2 1	0 3 3 1.5	
18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish	3 (0) (0) (0) (0) (0)	(2) 1 1 0.5 0.5	1 2 2 1 1	0 3 3 1.5 1.5	
18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish 24. Amphibians	3 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(2) 1 0.5 0.5 (0.5)	1 2 2 1 1 1 1	0 3 1.5 1.5 1.5	
A provide the second seco		(2) 1 0.5 0.5 0.5 0.5 0.5	1 2 2 1 1 1 1 1 1	0 3 1.5 1.5 1.5 1.5 1.5	
A constrained for the second sec		(2) 1 1 0.5 0.5 0.5 FACW = 0.75; OBL	1 2 2 1 1 1 1 . = 1.5 Other = 0	0 3 1.5 1.5 1.5 1.5	
 18. Fibrous roots in streambed 19. Rooted upland plants in streambed 20. Macrobenthos (note diversity and abundance) 21. Aquatic Mollusks 22. Fish 23. Crayfish 24. Amphibians 25. Algae 26. Wetland plants in streambed *perennial streams may also be identified using other method 	3 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(2) 1 0.5 0.5 0.5 FACW = 0.75; OBL	1 2 2 1 1 1 1 . = 1.5 Other = 0	0 3 1.5 1.5 1.5 1.5	

Date: 3/22/2011 S. Muddy 46	Project/Site: M	Smuldy S. Mully	Latitude: 30	5.56250	
Evaluator: 5 melton / K. Mitchell	County: McD	County: McDivell		1.92366	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30*	Stream Determi Ephemeral Inte	nation (circle one) rmittent (Perennia)	Other e.g. Quad Name:	ther g. Quad Name :	
A. Geomorphology (Subtotal = <u>23</u>)	Absent	Weak	Moderate	Strong	
1 ^a Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	6	2	3	
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	1	2	3	
4. Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	(3)	
8. Headcuts	0	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	15	
11. Second or greater order channel	No	= 0	Yes	= 3	
artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = 10.5)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	()	1	2	3	
14. Leaf litter	(1.5)	1	0.5	0	
15. Sediment on plants or debris	0	0.5	1	9.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17: Soil-based evidence of high water table?	No	= 0	0 Yes =(3)		
C. Biology (Subtotal = 10.5)					
18. Fibrous roots in streambed	3)	2	1	0	
19. Rooted upland plants in streambed	3)	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	(3)	
21. Aquatic Mollusks	0	1	2	3	
22. Fish	0	0.5	1	(1.5)	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	1	1.5	
26. Wetland plants in streambed		FACW = 0.75; OBL	= 1.5 Other = 0		
*perennial streams may also be identified using other methods	s. See p. 35 of manual.				
Notes:					
Sketch: Photo # 12					

.

Date: 3/22/2011 GPS # 7	Project/Site: M	Smiddy Ditch 1	Latitude: 35.	56347	
Evaluator: S Melton / K. Mitchell	County: MLD	County: McDrwell		92268	
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determi Ephemeral Inte	Stream Determination (circle one) Ephemeral (Intermittent) Perennial		Other e.g. Quad Name:	
A. Geomorphology (Subtotal =3)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2.	3	
2. Sinuosity of channel along thalweg	0		2	3	
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	() +	2	3	
4. Particle size of stream substrate	0	1	2	3	
5. Active/relict floodplain	0	1	2	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	2	3	
8. Headcuts	Ô	1	2	3	
9. Grade control	0	0.5	1	1.5	
10. Natural valley	0	0.5	1	1.5	
11. Second or greater order channel	No = (0) Yes = 3			= 3	
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = $\frac{8}{5}$)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	0	(1)	2	3	
14. Leaf litter	1.5	1	(0.5)	0	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?	No	No = 0 Yes = 3		:3)	
C. Biology (Subtotal =)					
18. Fibrous roots in streambed	3	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	3	
21. Aquatic Mollusks	Ø	1	2	3	
22. Fish	Ô	0.5	1	1.5	
23. Crayfish	0	0.5	1	1.5	
24. Amphibians	0	0.5	1	1.5	
25. Algae	0	0.5	1	1.5	
26. Wetland plants in streambed		FACW = 0.75; OBL	= 1.5 Other = 0		
*perennial streams may also be identified using other method	ods. See p. 35 of manual				
Notes:					
and Phat HIHIS					

Sketch: Photo # 14,15

Date: 3/22/2011 GP5 H8	Project/Site: 10	S Muddy Ditch 2	Latitude: 35	56311
Evaluator: S. meltin / K. Mitchell	County: McDircl		Longitude: - 81, 9 2278	
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination (circle one) Ephemeral Intermittent Perennial		Other e.g. Quad Name:	
A Geomorphology (Subtotal -	Absont	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank		1		3
2 Sinuosity of channel along thatweet	0	1	2	3
3. In-channel structure: ex_riffle-pool_step-pool	U U	$\overline{\mathbf{A}}$	2	5
ripple-pool sequence	0	Ŷ	2	3
4. Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	(\mathbf{j})	2	3
8. Headcuts	9	(\mathbf{j})	2	3
9. Grade control	6	0.5	1	1.5
10. Natural valley	\bigcirc	0.5	1	1.5
11. Second or greater order channel	No	=0	Yes = 3	
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u></u>)				
12. Presence of Baseflow	0	\bigcirc	2	3
13. Iron oxidizing bacteria	0	(1)	2	3
14. Leaf litter	1.5	Û	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.6	1	1.5
17. Soil-based evidence of high water table?	No	No = 0 Yes =③		:3
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	Q	1	2	3
21. Aquatic Mollusks	(0)	1	2	3
22. Fish	6	0.5	1	1.5
23. Crayfish	Q	0.5	1	1.5
24. Amphibians	(<u>o</u>)	0.5	1	1.5
25. Algae	(0)	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OBL	. = 1.5 Other = 0	
*perennial streams may also be identified using other methods	s. See p. 35 of manual			
Notes:				
Sketch: Photo 16,17				

i.

NC Division of Water Quality –Methodology for Identification of Intermittent and Perennial Streams and Their Origins v. 4.1

Date: 8/23//)	Project/Site:	souse Farm	Latitude:	
Evaluator:	County: Mc	Dowell	Longitude:	
Fotal Points: Stream is at least intermittent f ≥ 19 or perennial if ≥ 30*	Stream Determi Ephemeral Inte	nation (circle one) rmittent Rerennia	Other e.g. Quad Name:	
A. Geomorphology (Subtotal = 10.5)	Absent	Weak	Moderate	Strong
^a Continuity of channel bed and bank	0	1	2	<u> </u>
2. Sinuosity of channel along thalweg	0	\bigcirc	2	3
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	Q	2	3
Particle size of stream substrate	0	<u> </u>	2	3
5. Active/relict floodplain	<u>′</u> @	1	2	3
6. Depositional bars or benches	0	<u> </u>	2	3
7. Recent alluvial deposits	0		2	3
3. Headcuts	0	<u> () </u>	2	3
9. Grade control	0	0.5	(<u>)</u>	1.5
IO. Natural valley	0	(0.5)	- 1	1.5
11. Second or greater order channel	N		Yes	= 3
B. Hydrology (Subtotal = 113)			0	
12. Presence of Baseflow		1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>
3. Iron oxidizing bacteria	603		<u> </u>	3
14. Leaf litter	1.5	(1)	0.5	0
15. Sediment on plants or debris	0	0.5	<u> </u>	1.5
16. Organic debris lines or piles	0	0.5	1	
17. Soil-based evidence of high water table?	N	0 = 0	165	2
C. Biology (Subtotal = <u>b</u>)				1
18. Fibrous roots in streambed		2	1	0
19. Rooted upland plants in streambed	<u>_</u>	.2	1	0
20. Macrobenthos (note diversity and abundance)		1	2	3
21. Aquatic Mollusks	<u> </u>		2	3
22. Fish	0	0.5 /	1	1.5
23. Crayfish		0.5	1	1.5
24. Amphibians	0	(0.5) *		1.5
25. Algae	0	0.5		1.5
26. Wetland plants in streambed		FAGW = 0.75; C	DBL = 1.5 Other =	3
*perennial streams may also be identified using other met	hods. See p. 35 of manu	ai.		
Notes:	<u></u>			
Skotob				
SKelch				

NC Division of Water Quality –Methodology for Identification of Intermittent and Perennial Streams and Their Origins v. 4.1

NC DWQ Stream Identification For	m Version 4.1	B IVO	Branch	
Date: 8 23 11	Project/Site:	prouse Fam	Latitude:	
Evaluator:	County: Mo	County: Madowell		
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determi Ephemeral Inte	nation (circle one) rmittent Perennia	Other e.g. Quad Name:	
A. Geomorphology (Subtotal = 15.5)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0	1	Ø	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
4. Particle size of stream substrate	0	1	<u>E</u> 2	3
5. Active/relict floodplain	\bigcirc	1	2	3
6. Depositional bars or benches	0	E E E E	2	3
7. Recent alluvial deposits	0	11	2	3
8. Headcuts	0	1	2	3
9. Grade control	0	0.5	0	1.5
10. Natural valley	0	(0.5)	1	1.5
11. Second or greater order channel	N	<u>っ もの</u>	Yes	= 3
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u>3.5</u>)			·	
12. Presence of Baseflow	l O	1	2	3
13. Iron oxidizing bacteria	Ø	1	2	3
14. Leaf litter	1.5	Ð	0.5	. 0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	(1)	1.5
17. Soil-based evidence of high water table?	N	o = 0	Yes	(3)
C. Biology (Subtotal = 3)				
18. Fibrous roots in streambed	3	2		0
19. Rooted upland plants in streambed	3	Q	1	0
20. Macrobenthos (note diversity and abundance)	6	1	2	3
21. Aquatic Mollusks	Ø	1	2	3
22. Fish	Q	0.5	1	1.5
23. Crayfish	<u></u>	0.5	1	1.5
24. Amphibians	le l	0.5	1	1.5
25. Algae	\odot	0.5	1	1.5
26. Wetland plants in streambed	·	FACW = 0.75; C	$BL = 1.5$ Other ± 0	2
*perennial streams may also be identified using other methods	ods. See p. 35 of manu	al.		
Notes:				
Sketch:				

41

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Part	1: General Project Information
Project Name:	
County Name:	
EEP Number:	
Project Sponsor:	
Project Contact Name:	
Project Contact Address:	
Project Contact E-mail:	
EEP Project Manager:	
	Project Description
Stream restoration activities will feet of stream along Middle Sou	restore approximately 2,414 feet of stream and enhance 207 th Muddy Creek and two of its tributaries, Sprouse and Iva
Branches by restoring natural cr	annel morphology and proper sediment transport capacity,
here stabilization actabilization	nstructing a noodplain bench, improving channel and stream
bank stabilization, establishing	a forested and herbaceous riparian burier plant community.
	For Official Use Only
Reviewed By:	
Date	EEP Project Manager
Conditional Annaoused Dur	
Conditional Approved By:	
Date	For Division Administrator FHWA
Check this box if there are	outstanding issues
Final Approval By:	
••••••	
Date	For Division Administrator FHWA

Part 2: All Projects	
Regulation/Question	Response
Coastal Zone Management Act (CZMA)	
1. Is the project located in a CAMA county?	🗌 Yes
	No No
2. Does the project involve ground-disturbing activities within a CAMA Area of	
Environmental Concern (AEC)?	
3. Has a CAMA permit been secured?	
4 Has NCDCM agreed that the project is consistent with the NC Coastal Management	
Program?	
Comprehensive Environmental Response, Compensation and Liability Act (C	ERCLA)
1. Is this a "full-delivery" project?	☐ Yes
2. Has the zoning/land use of the subject property and adjacent properties ever been	☐ Yes
designated as commercial or industrial?	🗌 No
	🗍 N/A
3. As a result of a limited Phase I Site Assessment, are there known or potential	🗌 Yes
hazardous waste sites within or adjacent to the project area?	🗌 No
	□ N/A
4. As a result of a Phase I Site Assessment, are there known or potential hazardous	🗌 Yes
waste sites within or adjacent to the project area?	No No
	<u> </u>
5. As a result of a Phase II Site Assessment, are there known or potential hazardous	
waste sites within the project area?	
C le there on ensured honordaux mitigation plan?	
6. Is there an approved hazardous mitigation plan?	
National Historic Preservation Act (Section 106)	
1 Are there properties listed on or eligible for listing on the National Register of	☐ Yes
Historic Places in the project area?	
2. Does the project affect such properties and does the SHPO/THPO concur?	
	□ N/A
3. If the effects are adverse, have they been resolved?	Yes
	🗌 No
	🗌 N/A
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Un	iform Act)
1. Is this a "full-delivery" project?	🗌 Yes
	No No
2. Does the project require the acquisition of real estate?	Yes
3. vvas the property acquisition completed prior to the intent to use federal funds?	
4. Has the owner of the property been informed:	
4. The une owner of the property been informed.	
* what the fair market value is believed to be?	

Part 3: Ground-Disturbing Activities Regulation/Question	Response
American Indian Religious Freedom Act (AIREA)	
1. Is the project located in a county claimed as "territory" by the Eastern Band of Cherokee Indians?	☐ Yes ☐ No
2. Is the site of religious importance to American Indians?	☐ Yes ☐ No ☐ N/A
3. Is the project listed on, or eligible for listing on, the National Register of Historic Places?	☐ Yes ☐ No ☐ N/A
4. Have the effects of the project on this site been considered?	☐ Yes ☐ No ☐ N/A
Antiquities Act (AA)	
1. Is the project located on Federal lands?	Yes No
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects of antiquity?	☐ Yes ☐ No ☐ N/A
3. Will a permit from the appropriate Federal agency be required?	☐ Yes ☐ No ☐ N/A
4. Has a permit been obtained?	☐ Yes ☐ No ☐ N/A
Archaeological Resources Protection Act (ARPA)	
1. Is the project located on federal or Indian lands (reservation)?	☐ Yes ☐ No
2. Will there be a loss or destruction of archaeological resources?	☐ Yes ☐ No ☐ N/A
3. Will a permit from the appropriate Federal agency be required?	☐ Yes ☐ No ☐ N/A
4. Has a permit been obtained?	
Endangered Species Act (ESA)	
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat listed for the county?	☐ Yes ☐ No
2. Is Designated Critical Habitat or suitable habitat present for listed species?	☐ Yes ☐ No ☐ N/A
3. Are T&E species present or is the project being conducted in Designated Critical Habitat?	☐ Yes ☐ No ☐ N/A
4. Is the project "likely to adversely affect" the species and/or "likely to adversely modify" Designated Critical Habitat?	☐ Yes ☐ No ☐ N/A
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?	☐ Yes ☐ No ☐ N/A
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	☐ Yes ☐ No ☐ N/A

Executive Order 13007 (Indian Sacred Sites)	
1. Is the project located on Federal lands that are within a county claimed as "territory" by the EBCI?	☐ Yes ☐ No
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed project?	
3. Have accommodations been made for access to and ceremonial use of Indian sacred sites?	
Earmland Protection Boliev Act (EPPA)	N/A
Farmanu Protection Policy Act (FPFA)	
1. Will real estate be acquired?	
2. Has NRCS determined that the project contains prime, unique, statewide or locally important farmland?	☐ Yes ☐ No ☐ N/A
3. Has the completed Form AD-1006 been submitted to NRCS?	☐ Yes ☐ No □ N/A
Eich and Wildlife Coordination Act (EWCA)	
1 Will the project impound divert channel deepen or otherwise control/modify any	
water body?	
2. Have the USEWS and the NCWRC been consulted?	
Land and Water Conservation Fund Act (Section 6(f))	
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	
2. Has the NPS approved of the conversion?	
Magnuson-Stovens Fishery Conservation and Management Act (Essential Fish	
1 Is the project located in an estuarine system?	
2. Is suitable habitat present for EFH-protected species?	
	□ N/A
3. Is sufficient design information available to make a determination of the effect of the	Yes
project on EFH?	└─ No └─ N/A
4. Will the project adversely affect EFH?	Yes
	∐ No □ N/A
5. Has consultation with NOAA-Fisheries occurred?	
	N/A
Migratory Bird Treaty Act (MBTA)	
1. Does the USEWS have any recommendations with the project relative to the MBTA?	☐ Yes ☐ No
2. Have the USFWS recommendations been incorporated?	
Wilderness Act	
1. Is the project in a Wilderness area?	Yes
2. Has a special use permit and/or easement been obtained from the maintaining	

EEP Floodplain Requirements Checklist

This form was developed by the National Flood Insurance program, NC Floodplain Mapping program and Ecosystem Enhancement Program to be filled for all EEP projects. The form is intended to summarize the floodplain requirements during the design phase of the projects. The form should be submitted to the Local Floodplain Administrator with three copies submitted to NFIP (attn. Edward Curtis), NC Floodplain Mapping Unit (attn. John Gerber) and NC Ecosystem Enhancement Program.

Name of project:	Middle South Muddy Creek Stream Restoration
Name if stream or feature:	South Muddy Creek
County:	McDowell
Name of river basin:	Catawba
Is project urban or rural?	Rural
Name of Jurisdictional municipality/county:	McDowell County
DFIRM panel number for entire site:	3710162600J
Consultant name:	Wolf Creek Engineering, PLLC (PRIME) WAZ Engineering, PC (SUB – hydraulic modeling)
Phone number:	(828) 658-3649 (Wolf Creek) (919) 567-0495 (WAZ)
Address:	7 Florida Ave Weaverville, NC 28787 (Wolf Creek) 112 N. Main Street Holly Spring, NC 27540 (WAZ)

Project Location

Design Information

Provide a general description of project (one paragraph). Include project limits on a reference orthophotograph at a scale of 1" = 500".

Summarize stream reaches or wetland areas according to their restoration priority.

Reach	Length	Priority
South Muddy Creek	900	II (Restoration)

Floodplain Information

Is project located in a Special Flood Hazard Area (SFHA)?
Yes No
If project is located in a SFHA, check how it was determined:
□ Redelineation
Detailed Study
✓ Limited Detail Study
C Approximate Study
Don't know
List flood zone designation: Zone AE
Check if applies:
▼ AE Zone
C Floodway
Non-Encroachment
C None
A Zone
Local Setbacks Required
No Local Setbacks Required
If local setbacks are required, list how many feet:
Does proposed channel boundary encroach outside floodway/non-
encroachment/setbacks?
🖸 Yes 🗖 No

Land Acquisition (Check)

□ State owned (fee simple)

Conservation easment (Design Bid Build)

Conservation Easement (Full Delivery Project)

Note: if the project property is state-owned, then all requirements should be addressed to the Department of Administration, State Construction Office (attn: Herbert Neily, (919) 807-4101)

Is community/county participating in the NFIP program?

🖸 Yes 🚺 No

Note: if community is not participating, then all requirements should be addressed to NFIP (attn: Edward Curtis, (919) 715-8000 x369)

Name of Local Floodplain Administrator: Jerry Silvers Phone Number: 828-652-7121

Floodplain Requirements

This section to be filled by designer/applicant following verification with the LFPA

No Action

🗖 No Rise

Letter of Map Revision

Conditional Letter of Map Revision

Conter Requirements

List other requirements:

To be determined once DRAFT design is approved. Will likely require a CLOMR. McDowell Co. may allow a No-Rise on the condition that a LOMR will be completed after construction.

Comments:

Name:	Amy J. Wazenegger, PE	Signature:
Title:	President/Sr. Engineer (WAZ)	Date:

APPENDIX C MITIGATION WORK PLAN DATA and ANALYSES

	Coefficient	Exponent	_				
Trendline Reference Streams				<u>Design l</u>	ine	Regiona	al Curve
Design Range (+/-)				Х	Y	Х	Y
Design Line	17.0	0.65		0.02	1.337	0.02	1.395
Regional Curve	18.6	0.66		20	119.157	20	134.684

Υ 1.634 36.575

0.469 1.200

	Coefficient	Exponent				
Trendline All Streams			Desig	n Line	Design	Line (2)
Design Range (+/-)			Х	Y	Х	Y
Design Line (1)	11.0	0.45	0.02	1.892	0.02	1.634
Design Line (2)	9.5	0.45	20	42.350	20	36.57
				_		

	Coefficient	Exponent				
Trendline Reference Streams			Design	Line (1)	Design	Line (2)
Design Range (+/-)			Х	Y	Х	Y
Design Line (1)	1.50	0.24	0.1	0.863	0.02	0.469
Design Line (2)	1.2	0.24	20	3.078	1	1.200

Conceptual Design

Estimated Channel Values from Regional Curves

Project:	Middle South Muddy
Project No.:	1049-MSMC
Client:	NCEEP
Contract No.:	93875
County/State:	McDowell County, NC
Hyd-Physio Provence:	NC Mountains

Regional Curve					
Province	e Code:	NCMT			
Dimension	<u>Coefficient</u>	Exponent			
W _{BKF}	17.36	0.3693			
A _{BKF}	18.559	0.6616			
d _{MEAN}	1.1771	0.2697			
Q _{BKF}	55.425	0.7874			
W _{BED}	0	0			
d _{MAX}	0	0			
Approximate \mathbf{W}_{BED} :	14.53	0.388			
Approximate d_{MAX} :	1.65	0.270			

Feature Dimensions				
Pool-Pool/W _{BKF} Ratio: 5				
Rc / W _{BKF} Ratio:	2			
Tan Len/W _{BKF} Ratio:	2			

Use Approximate W _{BED} (Yes/No):	Yes
Use Approximate d _{MAX} (Yes/No):	Yes

	Es	timated Dim	ensions fror	n Regional	Curve Data				
	Drainage						Pool		Tangent
Reach	Area	WBKF	A _{BKF}	d _{MEAN}	W _{BED}	d _{MAX}	Spacing	Rc	Length
	(mi ²)	(ft)	(ft ²)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
South Muddy Creek	4.7	30.7	51.7	1.8	26.5	2.5	154	<mark>61</mark>	61
Sprouse Branch	0.03	4.8	1.8	0.5	3.7	0.6	24	10	10
Sprouse Branch	0.04	5.3	2.2	0.5	4.2	0.7	26	11	11
Iva Branch	0.03	4.8	1.8	0.5	3.7	0.6	24	10	10
Iva Branch	0.046	5.6	2.4	0.5	4.4	0.7	28	11	11

Sediment Regime

					Upstream	Upstream				
Poach	South				Adjacent	Extended	Reference	Reference		
Neach	Muddy	Sprouse			Forecast	Forecast	Reach	Reach Cold		
	Creek	Branch	Iva Branch		Reach	Reach	Tom's Creek	Springs		
Bed Material Nature										
Depth of Bed Probe	0.8 - 1.0	0.2	0.3		0.6	0.6	0.5	0.2		
Matrix Bonding	Loose	Loose	Loose		Loose	Loose	Moderate	Moderate		
Parent Material Exposure	None	Occasional	Frequent		Occasional	None	None	None		
Well Graded	Yes	No	No		Yes	Yes	Yes	Yes		
Depositional Patterns (None-N	1inimal-Mode	rate-Extensiv	e)							
Point Bars	Minimal	None	Minimal		Moderate	Extensive	Extensive	Minimal		
Mid-channel Bars	Moderate	None	None		Moderate	Extensive	Moderate	Minimal		
Side-channel Bars	None	None	None		Minimal	Moderate	Moderate	None		
Diagonal Bars	Moderate	None	None		Minimal	Moderate	Moderate	Minimal		
Bar Length/W _{BED}	1	None	None		1	1.5	2	1		
Dune Presentation of Bars	Minimal	None	None		Minimal	Moderate	None	None		
Channel Branching	None	None	None		None	Mininal	None	None		
Tributary Deltas	None	None	None		N/a	Moderate	None	None		
Dune Length/Height (FT)	10/0.5	None	None		10/0.5	10/0.5	N/a	N/a		
Ripple Length/Height (FT)	0.5/0.1	0.2/0.05	0.2/0.05		N/a	N/a	N/a	N/a		
Sediment Measurements										
<u> Riffle - Pebble Count</u>										
% Sand	16%	80%	80%			35%	9%	11%		
D ₅₀	19	0.3	0.3			12	29	45		
D ₈₄	71	4	4			42	69	130		
D ₉₅	110	16	16			80	120	190		
<u>Reach - Pebble Count</u>	1									
% Sand	37%						4%	11%		
D ₅₀	18						31	31		
D ₈₄	83						71	120		
D ₉₅	140						94	170		
<u>Bar (Pavement)</u>										
% Sand						3%	2%	5%		
D ₅₀						25	46	79		
D ₈₄						47	88	99		
D ₉₅						58	110	110		
D _{MAX}						57	110	110		
Bar (Sub-Pavement)										
% Sand						10%	23%	35%		
D ₅₀						11	10	33		
D ₈₄						16	35	66		
D ₉₅						27	52	82		
Sediment Regime (Low - Mod.	Low - Modera	ate - Mod. Hig	h - High)							
Sediment Load	Mod. High	Low	Low		Mod. High	High	Mod. High	Mod. Low		
Sediment Mobility	Mod. High	High	High		Mod. High	High	Moderate	Mod. Low		

Project: Middle South Muddy Project No.: 1049-MSMC Client: NCEEP Contract No.: 93875 County/State: McDowell County, NC 15 10 5 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 -Regional Curve ----Reference/Watershed -Quick Section ------ Detailed Section Design Section

Design Section 2

Typical Section Dimensions

	Drainage	Design							Bank
	Area	Section							Slope
Reach	(mi²)		W_{BKF}	W_{BED}	W_{THAL}	W_{BENCH}	d _{MAX}	d_{TOE}	(H:1)
South Muddy Creek	4.7	1	30.8	22.1	6.6	10	2.17	1.74	2.5
Sprouse Branch	0.03	2	4.8	2.3	0.7	2	0.52	0.41	3.0
Sprouse Branch	0.04	2	5.2	2.6	0.8	3	0.55	0.44	3.0
Iva Branch	0.03	2	4.8	2.3	0.7	2	0.52	0.41	3.0
Iva Branch	0.046	2	5.5	2.8	0.8	3	0.57	0.46	3.0

	P _{WIDTH}	d_{POOL}/d_{MAX}	Pool Spacing/Bed		
	Ratio	Ratio	min	max	
Design Section 1	1.1	1.5	7	10	
Design Section 2	1.1	1.5	7	10	
Design Section 3	1.1	1.5	7	10	
Design Section 4	1.1	1.5	7	10	

Reach	A _{BKF}	P _{WET}	R _{HYD}	d _{MEAN}	W/D
South Muddy Creek	52.2	31.5	1.66	1.70	18.1
Sprouse Branch	1.6	4.9	0.33	0.34	14.1
Sprouse Branch	1.9	5.4	0.36	0.37	14.3
Iva Branch	1.6	4.9	0.33	0.34	14.1
Iva Branch	2.1	5.7	0.37	0.38	14.4

Poo	Pool Dimensions									
W _{IN}	W _{OUT}	d_{POOL}								
18.5	15.4	3.26								
2.9	2.4	0.78								
3.1	2.6	0.83								
2.9	2.4	0.78								
3.3	2.8	0.86								

Plan/Profile Measurements

		S _{VALLEY}		Entrench	Sinuosity		
			Elev			Chan	Meander
<u>Reach</u>	S _{AVG}	Length	Change	F/p Width	Val Length	length	Width
South Muddy Creek	0.003	897	5	65	1136	1169	100
Sprouse Branch	0.031	257	11	15	187	200	11
Sprouse Branch	0.014	364	8	15	422	450	16
Iva Branch	0.058	329	14	15	424	461	12
Iva Branch	0.026	265	16	15	151	154	12

Morphologic Design Table

		Drainage						
	Stream	Area	WRKE	ARKE	d _{MFAN}	d _{MAX}	SAVG	SVALLEY
<u>Reach</u>	Туре	(mi ²)	(ft)	(ft ²)	(ft)	(ft)	(ft/tf)	(ft/tf)
South Muddy Creek	C4	4.700	30.8	52.2	1.7	2.2	0.003	0.006
Sprouse Branch	B5	0.030	4.8	1.6	0.3	0.5	0.031	0.043
Sprouse Branch	B5	0.040	5.2	1.9	0.4	0.6	0.014	0.022
Iva Branch	B5	0.030	4.8	1.6	0.3	0.5	0.058	0.043
Iva Branch	B5	0.046	5.5	2.1	0.4	0.6	0.026	0.060

		Entrench		Meander	Pool Spacing (ft)		P _{SPACE} /W _{BKE}	
<u>Reach</u>	W/D Ratio	<u>Ratio</u>	<u>Sinuosity</u>	Width Ratio	(min)	(max)	(min)	(max)
South Muddy Creek	18.1	2.1	1.03	3.2	154.5	220.7	5.0	7.2
Sprouse Branch	14.1	3.2	1.07	2.3	15.9	22.7	3.3	4.8
Sprouse Branch	14.3	2.9	1.07	3.1	18.1	25.8	3.4	4.9
Iva Branch	14.1	3.2	1.09	2.5	15.9	22.7	3.3	4.8
Iva Branch	14.4	2.7	1.02	2.2	19.3	27.5	3.5	5.0

Structure Dimensions

Arm Length Ratio	1.6	$X W_{BED}$
Throat Width	1/3	X W _{BKF}
Buried Length	1/3	X L _{ARM}
Minimum Buried Length	3	(ft)
Maximum Buried Length	8	(ft)

			Arm Length	Throat	Buried	Total Log
Reach	WBKF	W _{BED}	(L)	Width (W)	Length (X)	Length (ft)
South Muddy Creek	30.8	22.1	35	10	8	51
Sprouse Branch	4.8	2.3	4	2	3	10
Sprouse Branch	5.2	2.6	4	2	3	10
Iva Branch	4.8	2.3	4	2	3	10
Iva Branch	5.5	2.8	4	2	3	10

				Bould	ler Size Based	d on:	Recommended Boulder Size			
		Structure	Structure		Structure					
<u>Reach</u>	τ	Drop	Length	Bed Shear	Shear	Bed Width	Length	Width	Depth	
South Muddy Creek	0.32	0.4	35	2.5	3.0	3.0	3	2	1.5	
Sprouse Branch	0.65	0.5	5	3.0	3.5	2.5	2.5	1.5	1	
Sprouse Branch	0.32	0.5	5	2.5	3.5	2.5	2.5	1.5	1	
Iva Branch	1.22	1	5	3.5	4.0	2.5	2.5	1.5	1	
Iva Branch	0.62	1	5	3.0	4.0	2.5	2.5	1.5	1	

Project: Middle South Muddy Project No.: 1049-MSMC Client: NCEEP Contract No.: 93875 County/State: McDowell County, NC

Bed Material Regime 1

Maximum	Particle Cr	itical Dimensionless Shear	<u>Represent</u>	ative Partic	Bed Material D ₅₀ (mm)
D ₅₀	19	Riffle Bed Material D ₅₀ (mm)	D ₅₀	19	Bed Material D ₅₀ (ft)
D^ ₅₀	11	Bar Sample D ₅₀ (mm)	D ₅₀	0.06	Submerged Specific Wt. of Sediment
D _{MAX}	57	Largest Particle from Bar Sample (mm)	Υ _s	1.65	Estimated Channel Slope
D _{MAX}	0.19	Largest Particle from Bar Sample (ft)	S	0.003	
Υ_{S}	1.65	Submerged Specific Wt. of Sediment			_
		-			
D ₅₀ /D [*] ₅₀	1.7	No (In range: 3-7)			
τ*	0.052				Typical Shield's Curve Value
D_{MAX}/D_{50}	3.0	Yes (In range: 1.3-3.0)	τ*	0.04	Slope based Lamb Equation
τ*	0.014		τ*	0.035]
					Range: 0.03 - 0.06
τ*	0.014	Dimensionless Shear for Max Particle	τ*	0.05	
		Bod Material	Pogimo 7		
Maximum	Particle Cr	itical Dimensionless Shear	Representa	ative Partic	Bed Material D _{E0} (mm)
D ₅₀	1	Riffle Bed Material D ₅₀ (mm)	D ₅₀	1	Bed Material D_{50} (ft)
D^ ₅₀	0.5	Bar Sample D_{50} (mm)	D ₅₁	0.00	Submerged Specific Wt. of Sediment
D _{MAX}	4	Largest Particle from Bar Sample (mm)	۲ _s	1.65	Estimated Channel Slope
D _{MAX}	0.01	Largest Particle from Bar Sample (ft)	S	0.002	
Υ _s	1.65	Submerged Specific Wt. of Sediment			-
		-			
D ₅₀ /D [*] ₅₀	2.0	No (In range: 3-7)			
τ*	0.046				Typical Shield's Curve Value
D_{MAX}/D_{50}	4.0	No (In range: 1.3-3.0)	τ*	0.04	Slope based Lamb Equation
τ*			<u>ب</u>		7
	0.011		τ*	0.032	
	0.011		τ*	0.032	Range: 0.03 - 0.06

			Largest Particle Calculations		Repres	sentative Pa	article Calcu	lations		
		Bed								
Reach	R _{HYD}	Regime	τ*	۲ _s	D _{MAX}	S	τ*	Υ _s	D ₅₀	S
South Muddy Creek	1.66	1	0.014	1.65	0.19	0.0026	0.05	1.65	0.062	0.0031
Sprouse Branch	0.33	2	0.03	1.65	0.01	0.0020	0.04	1.65	0.003	0.0007
Sprouse Branch	0.36	2	0.03	1.65	0.01	0.0018	0.04	1.65	0.003	0.0006
Iva Branch	0.33	2	0.03	1.65	0.01	0.0020	0.04	1.65	0.003	0.0007
Iva Branch	0.37	2	0.03	1.65	0.01	0.0018	0.04	1.65	0.003	0.0006

Supplemental Bed Material Design

Material Gradation									
Percentage of Total by Weight									
Material Size	Sand/Clay	ABC(M)	1/2" Stone (No. 57)	3/4" Stone (No. 5)	2" Stone (Surge)	6" Stone NCDOT (Class A)	12" Stone NCDOT (Class B)	18" Stone NCDOT (Class I)	
Sand	100								
#16		12							
#10		9	2						
#8		9	3						
#4		16	12	2					
3/8"		16	25	3					
1/2"		13	48	32					
3/4"		12	7	58					
1"		13	3	5					
1.5"						19			
2"					50	19			
3"					50	19			
4"						19	19	13	
5"						19	19	13	
6"						5	19	14	
8"							19	14	
9"							19	14	
10"							5	13	
12"								14	
14"								5	
16"									
18"									
24"									
Total %	100	100	100	100	100	100	100	100	

Material Composition								
Reach	Sand/Clay	ABC(M)	1/2" Stone (No. 57)	3/4" Stone (No. 5)	2" Stone (Surge)	6" Stone NCDOT (Class A)	12" Stone NCDOT (Class B)	18" Stone NCDOT (Class I)
South Muddy Creek	10%		30%		30%	30%		
Sprouse Branch	100%							
Sprouse Branch	100%							
Iva Branch	100%							
Iva Branch	100%							

Design Size Distribution (mm)							
Reach	D ₁₆	D ₃₅	D ₅₀	D ₆₅	D ₈₄	D ₉₅	
South Muddy Creek	5	13	41	50	72	112	
Sprouse Branch	<1	<1	<1	<1	<1	<1	
Sprouse Branch	<1	<1	<1	<1	<1	<1	
Iva Branch	<1	<1	<1	<1	<1	<1	
Iva Branch	<1	<1	<1	<1	<1	<1	

1) Individual Pebble Count

Two individual samples may be entered below. Select sample type for each.

Riffle Surface	-		
Material	Size Ra	ange (mm)	Count
silt/clay	0	- 0.062	
very fine sand	0.062	- 0.125	
fine sand	0.125	- 0.25	7
medium sand	0.25	- 0.5	2
coarse sand	0.5	- 1	3
very coarse sand	1	- 2	4
very fine gravel	2	- 4	1
fine gravel	4	- 6	2
fine gravel	6	- 8	5
medium gravel	8	- 11	11
medium gravel	11	- 16	11
coarse gravel	16	- 22	9
coarse gravel	22	- 32	5
very coarse gravel	32	- 45	10
very coarse gravel	45	- 64	12
small cobble	64	- 90	10
medium cobble	90	- 128	9
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
total	partic	le count:	101
bedrock			
clay hardpan			
detritus/wood			
artificial			
	tot	al count:	101
Note: On-Site Bet	ween <u>F</u>	ords	

Riffle Surface			
Material	Size R	ange (mm)	Count
silt/clay	0	- 0.062	1
very fine sand	0.062	- 0.125	3
fine sand	0.125	- 0.25	6
medium sand	0.25	- 0.5	8
coarse sand	0.5	- 1	12
very coarse sand	1	- 2	5
very fine gravel	2	- 4	1
fine gravel	4	- 6	4
fine gravel	6	- 8	4
medium gravel	8	- 11	5
medium gravel	11	- 16	8
coarse gravel	16	- 22	10
coarse gravel	22	- 32	9
very coarse gravel	32	- 45	10
very coarse gravel	45	- 64	7
small cobble	64	- 90	3
medium cobble	90	- 128	1
large cobble	128	- 180	1
very large cobble	180	- 256	2
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
tota	l parti	cle count:	100
bedrock			
clay hardpan			
detritus/wood			
artificial			
	to	tal count:	100
Note: Extended B	Toracas	st Reach	

Run									
Material Size Range (mm) Count		Run M	liddle Sout	th Muddy C	Creek			cumulativo %	# of particlos
silt/clay 0 - 0.062				,					# or particles
very fine sand 0.062 - 0.125									
fine sand 0.125 - 0.25 1			silt/clay		and	aravol	cobblo	bouldor	
medium sand 0.25 - 0.5 1		100%	SilvClay	•	Sanu	giavei	CODDIE	Douidei	3.5
coarse sand 0.5 - 1 3		000/							
very coarse sand 1 - 2 1		90%			_				- 3
very coarse sailu 1 - 2 1		80%	+-						5
		00%							
fine gravel 4 - 6		70%							- 2.5
fine gravel 6 - 8		5							2
medium gravel 8 - 11		∯ 60%							3
medium gravel 11 - 16		er							+ 2 ĕ
coarse gravel 16 - 22 1		j <u></u> 50%							으
coarse gravel 22 - 32 2		ant							- 1.5
very coarse gravel 32 - 45 3		<u>ଧ</u> ୍ 40%					l i		T.
very coarse gravel 45 - 64 3		ed ooor							ie
small cobble 64 - 90 3		30%							+ 1 "
medium cobble 90 - 128 1		20%							
		2070							0.5
		10%							0.5
Very large cobble 180 - 256									
small boulder 256 - 362		0%							0
small boulder 362 - 512		0	01	0.1	1	10	100	1000	10000
medium boulder 512 - 1024						nortiale size (mm			
large boulder 1024 - 2048						particle size (mm	1)		
very large boulder 2048 - 4096									
total particle count: 20									
			Size	(mm)	Si	ze Distribution		Type	
bodrock			D16	0.66				nypc	
			D10	0.00	l diana	reion 00.4		sill/clay 0%	
			D35	22	uispe	20.4		Sanu 30%	
detritus/wood			D50	36	SKEW	/ness -0.48		gravei 45%	
artificial			D65	51				cobble 25%	
total count: 20			D84	79			k	ooulder 0%	
			D95	130					
Note:									
Glido	1 🗖								
Glide									
Glide Material Size Range (mm) Count									
Glide Material Size Range (mm) Count silt/clay 0 - 0.062									
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 very fine sand 0.062 - 0.125				G	Glide Middle S	outh Muddy Cre	eek 🔶	cumulative %	-# of particles
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 0.0125 0.012				G	Glide Middle S	outh Muddy Cre	eek 🔶	cumulative %	-# of particles
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.025 0.025 very fine sand 0.062 - 0.125 1 fine sand 0.125 - 0.25 1 medium sand 0.25 - 0.5 4		100	%silt/cl	C ay	Glide Middle S	outh Muddy Cre	eek 🔶	cumulative %	# of particles
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.0125 very fine sand 0.062 - 0.125 1 fine sand 0.125 - 0.5 1 medium sand 0.25 - 1 -		100	%silt/cl	C ay	Glide Middle S	outh Muddy Cre	eek 🔶	cumulative %	# of particles
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062		100	%silt/cl: %	ay	Glide Middle S	outh Muddy Cre	eek 🔶	cumulative %	-# of particles 4.5 4
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 0.062 very fine sand 0.062 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 1 very coarse sand 1 - 2 2 very fine gravel 2 - 4 0		100 90	% silt/cl	ay	Blide Middle S	outh Muddy Cro	eek 🔶	cumulative %	-# of particles 4.5 4
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 0.125 very fine sand 0.062 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 1 very coarse sand 1 - 2 2 very fine gravel 2 - 4 1 fine gravel 4 - 6 6		100 90 80	% silt/cl	ay	Slide Middle S	outh Muddy Cra	eek 🔶	sumulative %	-# of particles 4.5 4 3.5
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 very coarse sand 0.5 - 1 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - 4 fine gravel 4 - 6 - 6 fine gravel 6 - 8 - 8		100 90 ⊊ 70	% silt/cl	ay	Slide Middle S	outh Muddy Cre	eek 🔶 c	cumulative %	-# of particles 4.5 4 3.5 2.2
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 fine sand 0.125 - 0.55 medium sand 0.25 - 0.5 very coarse sand 0.5 - 1 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11		100 90 80 50 51 51 51 51 51 51 51 51 51 51 51 51 51	% silt/cl.	c ay	Slide Middle S	outh Muddy Cre gravel	eek → c	boulder	-# of particles 4.5 4 3.5 3 mg
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 very coarse sand 0.5 - 1 very fine gravel 2 - 4 fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 8 - 11 medium gravel 8 - 11		100 90 80 100 100 100 100 100 100 100 100 100	% silt/cl % % %	ay	Slide Middle S	outh Muddy Cra	eek	cumulative %	-# of particles 4.5 4 3.5 3 mm 2.5 eg
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 0.125 very fine sand 0.062 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 1 very coarse sand 1 - 2 2 very fine gravel 2 - 4 1 fine gravel 4 - 6 6 medium gravel 8 - 11 1 medium gravel 11 - 16 2 -		100 90 80 10 10 10 10 10 10 10 10 10 10 10 10 10	% silt/cl. % % %	ay	Slide Middle S	outh Muddy Cra gravel	eek -c	sumulative %	-# of particles 4.5 4 3.5 3 mum 2.5 of
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0.062 very coarse sand 1 - 2 2 very fine gravel 2 - 4 4 fine gravel 4 - 6 6 fine gravel 6 - 8 8 medium gravel 11 - 1 1 medium gravel 11 - 2 1		100 90 80 70 60 50	% silt/cl % % % %	G av	Slide Middle S	outh Muddy Cra gravel	eek -c	cumulative %	-# of particles 4.5 4 3.5 3 mber 2.5 of 2
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 fine sand 0.125 - 0.5 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - 4 fine gravel 4 - 6 - 6 fine gravel 6 - 8 - 6 medium gravel 8 - 11 1 medium gravel 11 - 16 - 6 coarse gravel 16<- 22 1 - 2 upper coarse gravel 2 - 32 - 32		100 90 80 100 100 100 100 100 100 100 100 100	% silt/cl % % % %	ay	Silide Middle S	outh Muddy Cre gravel	eek → c	sumulative %	-# of particles 4.5 4 3.5 3 mumber 2.5 of 2 part.
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 - very coarse sand 0.5 - 1 - very fine gravel 2 - 4 - - fine gravel 2 - 4 - - - very fine gravel 4 - 6 -		100 90 80 70 60 50 40	% silt/cl % % % % %	ay	Slide Middle S	outh Muddy Cro gravel	eekc	oumulative %	-# of particles 4.5 4 3.5 3.5 2.5 of 2 particle
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 1 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very fine gravel 2 - 4 6 fine gravel 4 - 6 6 fine gravel 8 - 11 1 medium gravel 8 - 11 1 medium gravel 11 - 16 - coarse gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2		100 90 80 70 60 50 50 40 30 30	% silt/cl. % % % % %	C	Slide Middle S	outh Muddy Cra gravel		sumulative %	-# of particles 4.5 4 3.5 3 mumber 2.5 of 2 particles 1.5 les
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - 4 fine gravel 4 - 6 - 6 fine gravel 6 - 8 - 6 medium gravel 11 - 16 - 11 medium gravel 11 - 16 - 22 1 coarse gravel 16 - 22 1 - 23 - 24 very coarse gravel 32 - 45 2 - 24 <t< th=""><td></td><td>100 90 80 70 50 50 40 30 20</td><td>% silt/cl % % % % % %</td><td>c av</td><td>Slide Middle S</td><td>outh Muddy Cre gravel</td><td>eek - c</td><td>cumulative %</td><td>-# of particles 4.5 4 3.5 3 mumber of 2.5 of particles 1.5 cles</td></t<>		100 90 80 70 50 50 40 30 20	% silt/cl % % % % % %	c av	Slide Middle S	outh Muddy Cre gravel	eek - c	cumulative %	-# of particles 4.5 4 3.5 3 mumber of 2.5 of particles 1.5 cles
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 - very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 4 - 6 - medium gravel 8 - 11 1 medium gravel 8 - 11 1 medium gravel 16 - 22 1 coarse gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 45 - 64 - small cobble 64 - 90 2 -		100 90 80 trau 100 80 40 50 50 40 30 20	% silt/cl % % % % % %	ay	Silide Middle S	outh Muddy Cre gravel		sumulative %	-# of particles 4.5 4 3.5 3.5 2.5 of particles 2 particles 1.5 les 1
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0.062 very coarse sand 0.5 - 1 0.062 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 4 - 6 - fine gravel 8 - 11 1 medium gravel 8 - 11 1 medium gravel 16 - 22 1 coarse gravel 16 - 22 1 - coarse gravel 32 - 45 2 - very coarse gravel 32 - 45 2 - wery coarse gravel 45 - 64 - - medium cobble		100 90 80 100 et the 50 40 30 20 10	% silt/cl. % % % % % % %	ay	Slide Middle S	outh Muddy Cra gravel		sumulative %	-# of particles 4.5 4 3.5 2.5 rof 2.5 es 1.5 es 1 0.5
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0 very fine gravel 2 - 4 1 fine gravel 4 - 6 6 fine gravel 8 - 11 1 medium gravel 11 - 16 1 coarse gravel 16 - 22 1 coarse gravel 12 - 32 2 very coarse gravel 11 - 16 1 coarse gravel 12 - 32 2 very coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 45 - 64 - small cobble 64 - 90 2 medium cobble 90 - 128 2		100 90 80 70 100 100 100 20 20 20	% silt/cl % % % % % %	av	Slide Middle S	outh Muddy Cre gravel	eek - c	cumulative %	-# of particles 4.5 4 3.5 3 mumber of 2.5 of particles 1.5 cles 1 0.5
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.5 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 - very coarse sand 0.5 - 1 - very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 4 - 6 - medium gravel 8 - 11 1 medium gravel 11 - 16 - coarse gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 45 - 64 - small cobble 128 - 180 very large cobble 128 - 180 very large		100 90 80 100 100 100 100 100 100 100 100 100	% silt/cl % % % % % % %		Silide Middle S	outh Muddy Cre gravel		sumulative %	-# of particles 4.5 4 3.5 3 mumber of 2.5 of particles 1.5 cles 1 0.5 0.5
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 - very fine gravel 2 - 4 - fine gravel 2 - 4 - fine gravel 4 - 6 - medium gravel 8 - 11 1 medium gravel 8 - 11 1 medium gravel 11 - 16 - coarse gravel 16 - 22 1 coarse gravel 16 - 22 1 coarse gravel 16 - 22 1 coarse gravel 22 - 32 2 very coarse gravel 32 - 45 2 very coarse gravel 32 - 64 3 small cobble 64 - 90 2 3 <t< th=""><td></td><td>100 90 80 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90</td><td>% silt/cl. % % % % % % % % % 0.01</td><td>Cay</td><td>Slide Middle S</td><td>outh Muddy Cro gravel</td><td>eek</td><td>boulder boulder</td><td>-# of particles 4.5 4 3.5 2.5 of particles 1.5 les 1 0.5 0 10000</td></t<>		100 90 80 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	% silt/cl. % % % % % % % % % 0.01	Cay	Slide Middle S	outh Muddy Cro gravel	eek	boulder boulder	-# of particles 4.5 4 3.5 2.5 of particles 1.5 les 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0.062 very coarse sand 0.5 - 1 0.062 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very coarse gravel 2 - 4 - fine gravel 4 - 6 - medium gravel 8 - 11 1 medium gravel 11 - 16 - coarse gravel 12 - 32 - very coarse gravel 32 - 45 2 very coarse gravel 45 - 64 - small cobble 64 - 90 2 - medium cobble 90 - 128 2<		100 90 80 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	% silt/cl. % % % % % % % % % % % % % % % % % % %	Cay	Blide Middle S	outh Muddy Cre gravel	eek • • • •	boulder boulder	+# of particles 4.5 4 3.5 2.5 rumber of 2.5 rop particles 1.5 les 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 4 - 6 - medium gravel 8 - 11 1 medium gravel 18 - 11 1 medium gravel 16 - 22 1 coarse gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 45 - 64 - small cobble 128 180 - very large cobble 128 180 -		100 90 80 treet tile 100 100 20 10 0 0	% silt/cl % % % % % % % % 0.01	ay 0.1	Silde Middle S	outh Muddy Cre gravel	eek ••••	sumulative %	+# of particles 4.5 4 3.5 0 2.5 of particles 1.5 cles 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 fine sand 0.125 - 0.5 4 coarse sand 0.5 - 1 - very coarse sand 0.5 - 1 - very coarse sand 0.5 - 4 - fine gravel 2 - 4 - - very fine gravel 2 - 4 - - medium gravel 8 - 11 1 - - coarse gravel 16 - 22 1 - - - coarse gravel 16 - 22 1 - <td></td> <td>100 90 80 true tue tue 50 50 50 40 30 20 10 0 0</td> <td>% silt/cl % % % % % % % % 0.01</td> <td>ay </td> <td>Silide Middle S</td> <td>outh Muddy Cre gravel</td> <td>eek</td> <td>sumulative %</td> <td>-# of particles 4.5 4 3.5 2.5 of particles 1.5 0.5 0 10000</td>		100 90 80 true tue tue 50 50 50 40 30 20 10 0 0	% silt/cl % % % % % % % % 0.01	ay 	Silide Middle S	outh Muddy Cre gravel	eek	sumulative %	-# of particles 4.5 4 3.5 2.5 of particles 1.5 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0.062 very coarse sand 0.5 - 1 0.062 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 4 - 6 - fine gravel 8 - 11 1 medium gravel 11 - 16 - coarse gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 45 - 64 - small cobble 64 - 90 2 medium cobble 90 - 128 2 <		100 90 80 70 60 90 90 90 90 90 90 90 90 90 90 90 90 90	% silt/cl. % % % % % % % % 0.01	Cay	Blide Middle S	outh Muddy Cre gravel	eek	boulder boulder 1000	-# of particles 4.5 4 3.5 2.5 of particles 1.5 les 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 1 1 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very fine gravel 2 - 4 6 fine gravel 6 - 8 - medium gravel 11 - 16 - coarse gravel 16 - 22 1 coarse gravel 12 - 32 - very coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 very coarse gravel 18 - 180 - medium cobble 64 - 90 2 <tr< th=""><td></td><td>100 90 80 70 trainer theor 40 50 50 20 10 0 0</td><td>% silt/cl % % % % % % % 0.01</td><td>av 0.1</td><td>Slide Middle S</td><td>outh Muddy Cre gravel</td><td>eek • • • •</td><td>boulder 1000</td><td>+# of particles 4.5 4 3.5 0 2.5 of particles 1 0.5 0 10000</td></tr<>		100 90 80 70 trainer theor 40 50 50 20 10 0 0	% silt/cl % % % % % % % 0.01	av 0.1	Slide Middle S	outh Muddy Cre gravel	eek • • • •	boulder 1000	+# of particles 4.5 4 3.5 0 2.5 of particles 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 1 - very coarse sand 0.5 1 - very coarse sand 1 2 2 very fine gravel 2 4 - fine gravel 6 8 - medium gravel 8 - 11 medium gravel 16 - 22 very coarse gravel 32 - 32 very coarse gravel 32 - 45 very coarse gravel 32 - 32 very coarse gravel 45 - 64 small cobble 90 - 128 2 large cobble 180 - 180 - very large cobble 180 - 56		100 90 80 100 100 100 100 100 100 100 100	% silt/cl % % % % % % % % 0.01	Cay ay 0.1	Silide Middle S	outh Muddy Cre gravel	eek ••••	Sumulative %	+# of particles 4.5 4 3.5 2.5 of particles 1.5 cles 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 4 - 6 - fine gravel 8 - 11 1 medium gravel 8 - 11 1 medium gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 32 - 45 2 wery coarse gravel 45 - 64 - small cobble 64 - 90 2 <tr< th=""><td></td><td>100 90 80 40 90 90 90 90 90 90 90 90 90 90 90 90 90</td><td>% silt/cl % % % % % % % 0.01 Size (D16</td><td>0.1</td><td>Blide Middle S</td><td>outh Muddy Cre gravel</td><td>eek</td><td>Sumulative %</td><td>+ of particles 4.5 4 3.5 2.5 of 2.5 of 1.5 les 1 0.5 0 10000</td></tr<>		100 90 80 40 90 90 90 90 90 90 90 90 90 90 90 90 90	% silt/cl % % % % % % % 0.01 Size (D16	0.1	Blide Middle S	outh Muddy Cre gravel	eek	Sumulative %	+ of particles 4.5 4 3.5 2.5 of 2.5 of 1.5 les 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very fine gravel 2 - 4 - fine gravel 6 - 8 - medium gravel 11 - 16 - - coarse gravel 16 - 22 1 - - - very coarse gravel 32 - 45 2 - <td></td> <td>100 90 80 10 10 10 10 10 10</td> <td>% silt/cl % % % % % % % 0.01 Size (D16</td> <td>(mm) 0.34 1.4</td> <td>Slide Middle S</td> <td>outh Muddy Cre gravel</td> <td>eek • • • •</td> <td>boulder boulder 1000</td> <td>+# of particles 4.5 4 3.5 2.5 of particles 1.5 cles 1 0.5 0 10000</td>		100 90 80 10 10 10 10 10 10	% silt/cl % % % % % % % 0.01 Size (D16	(mm) 0.34 1.4	Slide Middle S	outh Muddy Cre gravel	eek • • • •	boulder boulder 1000	+# of particles 4.5 4 3.5 2.5 of particles 1.5 cles 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 1 1 very coarse sand 0.5 1 1 very coarse sand 1 2 2 very fine gravel 2 4 6 fine gravel 6 8 1 medium gravel 8 - 11 1 medium gravel 16 - 22 1 coarse gravel 32 - 45 2 very coarse gravel 18 - 64 5 medium cobble 90 - 128 2		100 90 80 treet 90 50 50 40 30 20 10 0	% silt/cl % % % % % % % 0.01	(mm) 0.34 1.4	Slide Middle S	outh Muddy Cre gravel	eek ••••	sumulative % boulder boulder 1000	+# of particles 4.5 4 3.5 0 2.5 of particles 1.5 cles 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.125 fine sand 0.125 - 0.5 4 coarse sand 0.5 1 - very coarse sand 0.5 1 - very coarse sand 0.5 1 - very coarse sand 1 2 2 very fine gravel 2 4 - fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 16 - 22 coarse gravel 16 - 22 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 180 - 2 large cobble 180 - 26 very coarse gravel 32 - 512 medium cobble 90<		100 90 80 40 90 90 90 90 90 90 90 90 90 90 90 90 90	% silt/cl % % % % % % % % % 0.01 Size (D16 D35 D50	(mm) 0.34 1.4 19 65	Silide Middle S sand	outh Muddy Cre gravel	eek	sumulative % boulder boulder 1000	-# of particles 4.5 4 3.5 2.5 or particles 1.5 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 0.052 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 0.062 very coarse sand 0.25 - 0.5 4 coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very coarse sand 1 - 2 2 very coarse gravel 2 - 4 - fine gravel 4 - 6 - medium gravel 11 - 16 - coarse gravel 16 - 22 1 coarse gravel 22 - 32 - very coarse gravel 22 - 45 2 very coarse gravel 45 - 64 - small cobble 64 - 90 2 - medium cobble 90 - 128 </th <td></td> <td>100 90 80 100 100 100 100 100 100</td> <td>% silt/cl % % % % % % % % 0.01 Size (D16 D35 D50 D65</td> <td>(mm) 0.34 1.4 19 65</td> <td>Slide Middle S sand 1</td> <td>outh Muddy Cre gravel 10 particle size (mr 22 Distribution mean 6.1 rrsion 30.8 mess -0.31</td> <td>eek • • • • • • • • • • • • • • • • • •</td> <td>boulder boulder boulder 1000</td> <td>+# of particles 4.5 4 3.5 2.5 of particles 1.5 les 1 0.5 0 10000</td>		100 90 80 100 100 100 100 100 100	% silt/cl % % % % % % % % 0.01 Size (D16 D35 D50 D65	(mm) 0.34 1.4 19 65	Slide Middle S sand 1	outh Muddy Cre gravel 10 particle size (mr 22 Distribution mean 6.1 rrsion 30.8 mess -0.31	eek • • • • • • • • • • • • • • • • • •	boulder boulder boulder 1000	+# of particles 4.5 4 3.5 2.5 of particles 1.5 les 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 1 1 very coarse sand 1 - 2 2 very fine gravel 2 - 4 6 fine gravel 4 - 6 6 medium gravel 8 - 11 1 medium gravel 16 - 22 1 coarse gravel 16 - 22 1 coarse gravel 12 - 45 2 very coarse gravel 12 - 45 2 very coarse gravel 12 - 42 2 small cobble 64 - 90 2 medium cobble 90 - 128 2 large cobble 128 180 - very large cobble 180 - 256 1		100 90 80 100 100 100 100 100 100	% silt/cl % % % % % % % % 0.01 Size 0 D16 D35 D50 D65 D84	(mm) 0.34 1.4 19 65 110	Slide Middle S sand 1	outh Muddy Cre gravel 10 particle size (mr <u>ze Distribution</u> mean 6.1 prsion 30.8 mess -0.31	eek • • • •	boulder boulder boulder 1000	+# of particles 4.5 4 3.5 1.5 2 1.5 2 1 0.5 0 10000
Glide Material Size Range (mm) Count silt/clay 0 - 0.062 0.062 0.062 very fine sand 0.025 - 0.25 1 medium sand 0.25 - 0.5 4 coarse sand 0.5 1 0 very coarse sand 0.5 1 0 very coarse sand 1 2 2 very fine gravel 2 4 6 fine gravel 6 8 11 medium gravel 8 11 1 medium gravel 16 22 1 coarse gravel 32 45 2 very coarse gravel 32 45 2 very coarse gravel 32 45 2 very coarse gravel 18 - 180 1 wery coarse gravel 18 - 64 5 small cobble 180 - 256 1 small boulder 256 362 1		100 90 80 100 100 100 100 100 100 100	% silt/cl % % % % % % % % % 0.01 Size (D16 D35 D50 D65 D84 D95	(mm) 0.34 1.4 19 65 110 270	Slide Middle S sand 1	outh Muddy Cre gravel	eek - c	sumulative % boulder boulder 1000	4.5 4 3.5 2.5 2 1.5 0.5 0 10000

1) Individual Pebble Count

Two individual samples may be entered below. Select sample type for each.

Riffle Surface			
Material	Size R	Range (mm	Count
silt/clay	0	- 0.062	1
very fine sand	0.062	- 0.125	35
fine sand	0.125	- 0.25	12
medium sand	0.25	- 0.5	15
coarse sand	0.5	- 1	15
very coarse sand	1	- 2	2
very fine gravel	2	- 4	3
fine gravel	4	- 6	6
fine gravel	6	- 8	
medium gravel	8	- 11	1
medium gravel	11	- 16	5
coarse gravel	16	- 22	1
coarse gravel	22	- 32	1
very coarse gravel	32	- 45	1
very coarse gravel	45	- 64	1
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	1
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
tota	l parti	cle count:	100
bedrock			
clay hardpan			
detritus/wood			
artificial			
	to	tal count:	100
Note:			

Erosion Rate Calculations									
Project:	1049-MSMC			Date:	3/21/2011				
Stream:	MSMC			Crew:					
Reach/Description:				Page:1	Of: 7				
Feature	<u>Units</u>	moving u/s fr	om d/s end of	f project					
Reach Name		msmc	msmc	msmc	msmc	msmc	msmc		
Station/Location		13+00	13+00	12+50	11+50	11+50	08+50		
Photo No.									
Reach Length	ft	150	50	100	150	300	150		
Bank	RT-LT-Both	R	L	L	R	L	L		
Bank Height	ft	5	5	5	4	4	5		
Bankfull Height	ft	1.8	1.8	1.6	1.6	1.6	2		
Root Depth	ft	0.2	0.2	0.2	0.2	0.2	0.2		
Root Density	%	5%	5%	5%	5%	5%	2%		
Bank Angle	Degrees	80	80	60	40	85	35		
Surface Protection	%	30%	40%	75%	80%	60%	10%		
Bank Material	C-G-S-SC	S	S	S	S/G	S/G	S/G		
Stratification	Yes-No	N	N	N	Y	Y	Y		
Thalweg Position	C-OC-Toe	OC	ОС	ОС	С	С	OC		
D _{TOE} /D _{MEAN}	<1 or >1	<1	<1	1	<1	<1	<1		
Local Slope > Avg	Yes-No	N	N	N	N	N	N		
			BEHI	Calculation					
Bnk Ht / Bkf Ht		2.8	2.8	3.1	2.5	2.5	2.5		
BEHI Score		9	9	9.8	8.7	8.7	8.7		
Root Depth / Bnk H	t	0.04	0.04	0.04	0.05	0.05	0.04		
BEHI Score		9	9	9	9	9	9		
Weighted Root Den	sity	0.2%	0.2%	0.2%	0.3%	0.3%	0.1%		
BEHI Score		10	10	10	10	10	10		
Bank Angle		80	80	60	40	85	35		
BEHI Score		6	6	4	3	7	2.5		
Surface Protection		30%	40%	75%	80%	60%	10%		
BEHI Score		6	5	2.8	2	3.5	9		
Bank Material Adjus	stment	10	10	10	5	5	5		
Stratification Adjust	ment	0	0	0	5	5	5		
Total BEHI Score		50	49	45.6	42.7	48.2	49.2		
Rating		EXTREME	EXTREME	VERY HIGH	VERY HIGH	EXTREME	EXTREME		
			NBS	Calculation					
Thalweg Position Se	core	1.5	1.5	1.5	1	1	1.5		
Toe Depth Ratio Sc	ore	0	0	0	0	0	0		
Local Slope Score		0	0	0	0	0	0		
Total NBS Rating		1.5	1.5	1.5	1	1	1.5		
Rating		LOW	LOW	LOW	VERY LOW	VERY LOW	LOW		
			Erosion	Rate Prediti	on				
Erosion Rate (ft/yr)		0.4	0.4	0.23	0.17	0.2	0.4	Sheet Tota	
Erosion Total (ft ³ /yr)		300	100	115	102	240	300	1157	

	Erosion Rate Calculations									
Project:	1049-MSMC			Date:	3/21/2011					
Stream:	MSMC			Crew:						
Reach/Description:				Page: 2	Of: 7					
Feature	<u>Units</u>									
Reach Name		msmc	msmc	msmc	msmc	msmc	msmc			
Station/Location		10+00	08+50	05+00	05+00	07+00	02+00			
Photo No.										
Reach Length	ft	150	350	300	300	200	200			
Bank	RT-LT-Both	R	R	L	R	L	L			
Bank Height	ft	4	4.5	4.5	4.5	4	6			
Bankfull Height	ft	1.6	2	1.9	1.9	2	2			
Root Depth	ft	0.2	0.2	0.5	0.5	0.2	0.5			
Root Density	%	5%	2%	5%	5%	5%	10%			
Bank Angle	Degrees	75	85	80	80	55	85			
Surface Protection	%	25%	10%	75%	75%	85%	75%			
Bank Material	C-G-S-SC	S/G	S/G	S/G	S/G	S	S			
Stratification	Yes-No	Y	Y	N	N	N	N			
Thalweg Position	C-OC-Toe	OC	OC	С	С	OC	OC			
D _{TOE} /D _{MEAN}	<1 or >1	<1	<1	<1	<1	<1	<1			
Local Slope > Avg	Yes-No	N	N	N	N	N	N			
			BEHI	Calculation						
Bnk Ht / Bkf Ht		2.50	2.25	2.37	2.37	2.00	3.00			
BEHI Score		8.7	8.4	8.5	8.5	8	9.2			
Root Depth / Bnk H	t	0.05	0.04	0.11	0.11	0.05	0.08			
BEHI Score		9	9	8.5	8.5	9	8.7			
Weighted Root Den	sity	0.3%	0.1%	0.6%	0.6%	0.3%	0.8%			
BEHI Score		10	10	10	10	10	10			
Bank Angle		75	85	80	80	55	85			
BEHI Score		4.2	6.3	6	6	3	6.3			
Surface Protection		25%	10%	75%	75%	85%	75%			
BEHI Score		6	9	2.5	2.5	1.9	2.5			
Bank Material Adjus	stment	7	7	7	7	10	10			
Stratification Adjust	ment	0	0	0	0	0	0			
Total BEHI Score		44.9	49.7	42.5	42.5	41.9	46.7			
Rating		VERY HIGH	EXTREME	VERY HIGH	EXTREME	VERY HIGH	EXTREME			
			NBS	Calculation						
Thalweg Position Se	core	1.5	1.5	1	1	1.5	1.5			
Toe Depth Ratio Sc	ore	0	0	0	0	0	0			
Local Slope Score		0	0	0	0	0	0			
Total NBS Rating		1.5	1.5	1	1	1.5	1.5			
Rating		LOW	LOW	VERY LOW	VERY LOW	LOW	LOW			
			Erosion	Rate Prediti	on					
Erosion Rate (ft/yr)		0.24	0.41	0.17	0.2	0.23	0.4	Sheet Tot		
Frosion Total (ft ³ /yr)		144	645.75	229.5	270	184	480	1953.25		

	Erosion Rate Calculations								
Project:	1049-MSMC			Date:	3/21/2011				
Stream:	MSMC			Crew:					
Reach/Description:				Page: 3	Of: 7				
<u>Feature</u>	<u>Units</u>								
Reach Name		MSMC							
Station/Location		02+00							
Photo No.									
Reach Length	ft	200							
Bank	RT-LT-Both	R							
Bank Height	ft	6							
Bankfull Height	ft	2							
Root Depth	ft	0.5							
Root Density	%	10%							
Bank Angle	Degrees	85							
Surface Protection	%	75%							
Bank Material	C-G-S-SC	S							
Stratification	Yes-No	N							
Thalweg Position	C-OC-Toe	OC							
D _{TOE} /D _{MEAN}	<1 or >1	<1							
Local Slope > Avg	Yes-No	N							
			BEHI	Calculation					
Bnk Ht / Bkf Ht		3							
BEHI Score		9.2							
Root Depth / Bnk Ht	t	0.08							
BEHI Score		8.7							
Weighted Root Den	sity	0.8%							
BEHI Score		10							
Bank Angle		85							
BEHI Score		6.3							
Surface Protection		75%							
BEHI Score		2.5							
Bank Material Adjus	stment	10							
Stratification Adjustr	ment	0							
Total BEHI Score		46.7							
Rating		EXTREME							
			NBS	Calculation					
Thalweg Position So	core	1.5							
Toe Depth Ratio Sc	ore	0							
Local Slope Score		0							
Total NBS Rating		1.5							
Rating		LOW							
			Erosion	Rate Prediti	on				
Erosion Rate (ft/yr)		0.4						Sheet Total	
Erosion Total (ft ³ /yr)		480						480	

Erosion Rate Calculations									
Project:	1049-MSMC			Date:	3/21/2011				
Stream:	SPROUSE E	BRANCH		Crew:					
Reach/Description:				Page: 4	Of: 7				
<u>Feature</u>	<u>Units</u>								
Reach Name		SPROUSE	SPROUSE	SPROUSE	SPROUSE				
Station/Location		7+25	7+25	3+50	3+50				
Photo No.									
Reach Length	ft	375	375	350	350				
Bank	RT-LT-Both	L	R	L	R				
Bank Height	ft	3.5	3.5	3.5	3.5				
Bankfull Height	ft	0.4	0.4	0.4	0.4				
Root Depth	ft	1	1	0.7	0.7				
Root Density	%	25%	25%	15%	15%				
Bank Angle	Degrees	40	40	75	75				
Surface Protection	%	100%	100%	70%	70%				
Bank Material	C-G-S-SC	S	S	S, SC	S,SC				
Stratification	Yes-No	N	N	N	N				
Thalweg Position	C-OC-Toe	С	С	С	С				
D _{TOE} /D _{MEAN}	<1 or >1	1	1	1	1				
Local Slope > Avg	Yes-No	N	N	N	N				
			BEHI	Calculation					
Bnk Ht / Bkf Ht		8.75	8.75	8.75	8.75				
BEHI Score		10	10	10	10				
Root Depth / Bnk Hi	t	0.29	0.29	0.20	0.20				
BEHI Score		5.8	5.8	6	6				
Weighted Root Den	sity	7.1%	7.1%	3.0%	3.0%				
BEHI Score		8.8	8.8	9.5	9.5				
Bank Angle		40	40	75	75				
BEHI Score		3	3	5	5				
Surface Protection		100%	100%	70%	70%				
BEHI Score		0	0	2.7	2.7				
Bank Material Adjus	stment	10	10	8	8				
Stratification Adjust	ment	0	0	0	0				
Total BEHI Score		37.6	37.6	41.2	41.2				
Rating		HIGH	HIGH	VERY HIGH	VERY HIGH				
			NBS	Calculation					
Thalweg Position So	core	1	1	1	1				
Toe Depth Ratio Sc	ore	0	0	0	0				
Local Slope Score		0	0	0	0				
Total NBS Rating		1	1	1	1				
Rating		VERY LOW	VERY LOW	VERY LOW	VERY LOW				
			Erosion	Rate Prediti	on				
Erosion Rate (ft/yr)		0.17	0.17	0.17	0.17			Sheet Total	
Erosion Total (ft ³ /yr)		223.125	223.125	208.25	208.25			862.75	

Erosion Rate Calculations										
Project:	1049-MSMC			Date:	3/21/2011					
Stream:	IVA BRANCH	4		Crew:						
Reach/Description:				Page: 5	Of: 7					
Feature	<u>Units</u>									
Reach Name		IVA	IVA	IVA	IVA	IVA	IVA			
Station/Location				306+00	306+00	304+50	304+50	1		
Photo No.								1		
Reach Length	ft	75	75	150	150	100	100			
Bank	RT-LT-Both	L	R	L	R	L	R			
Bank Height	ft	2.5	2.5	4.5	4.5	6	6	1		
Bankfull Height	ft	0.6	0.6	0.6	0.6	0.6	0.6	1		
Root Depth	ft	0.4	0.4	0.2	0.2	0.3	0.3			
Root Density	%	5%	5%	5%	5%	2%	2%			
Bank Angle	Degrees	30	30	80	80	80	80			
Surface Protection	%	75%	75%	60%	60%	15%	15%			
Bank Material	C-G-S-SC	S/G	S/G	S/G	S/G	S/G	S/G			
Stratification	Yes-No	N	N	N	N	N	N			
Thalweg Position	C-OC-Toe	OC	OC	OC	ОС	С	С			
D _{TOE} /D _{MEAN}	<1 or >1	1	1	1	1	1	1			
Local Slope > Avg	Yes-No	N	N	N	N	N	N			
	·		BEHI	Calculation						
Bnk Ht / Bkf Ht		4.17	4.17	7.50	7.50	10.00	10.00			
BEHI Score		10	10	10	10	10	10			
Root Depth / Bnk H	t	0.16	0.16	0.04	0.04	0.05	0.05			
BEHI Score		8	8	10	10	10	10			
Weighted Root Den	sity	0.8%	0.8%	0.2%	0.2%	0.1%	0.1%			
BEHI Score		10	10	10	10	10	10			
Bank Angle		30	30	80	80	80	80			
BEHI Score		2.5	2.5	6	6	6	6			
Surface Protection		75%	75%	60%	60%	15%	15%			
BEHI Score		2.2	2.2	3.5	3.5	8	8			
Bank Material Adjus	stment	7	7	7	7	7	7			
Stratification Adjust	ment	0	0	0	0	0	0			
Total BEHI Score		39.7	39.7	46.5	46.5	51	51			
Rating		VERY HIGH	VERY HIGH	EXTREME	EXTREME	EXTREME	EXTREME			
			NBS	Calculation						
Thalweg Position S	core	1.5	1.5	1.5	1.5	1	1			
Toe Depth Ratio Sc	ore	0	0	0	0	0	0			
Local Slope Score		0	0	0	0	0	0			
Total NBS Rating		1.5	1.5	1.5	1.5	1	1			
Rating		LOW	LOW	LOW	LOW	VERY LOW	VERY LOW			
			Erosion	Rate Prediti	on					
Erosion Rate (ft/yr)		0.23	0.23	0.4	0.4	0.2	0.2	Sheet T		
Erosion Total (ft ³ /yr)	43.125	43.125	270	270	120	120	866.2		

Erosion Rate Calculations								
Project:	1049-MSMC			Date:	3/21/2011			
Stream:	IVA BRANCH	ł		Crew:				
Reach/Description:				Page: 6	Of: 7			
<u>Feature</u>	<u>Units</u>							
Reach Name		IVA	IVA	IVA	IVA		IVA	
Station/Location		3+50	3+50	3+00	3+00			
Photo No.								
Reach Length	ft	50	50	150	150			
Bank	RT-LT-Both	L	R	L	R			
Bank Height	ft	10	4.5	12	12			
Bankfull Height	ft	0.4	0.4	0.4	0.4			
Root Depth	ft	0.3	0.3	0.3	0.3			
Root Density	%	2%	2%	1%	1%			
Bank Angle	Degrees	90	80	85	85			
Surface Protection	%	10%	25%	10%	10%			
Bank Material	C-G-S-SC	S/G	S/G	S/G	S/G			
Stratification	Yes-No	N	N	N	N			
Thalweg Position	C-OC-Toe	С	С	С	С			
D _{TOE} /D _{MEAN}	<1 or >1	1	1	1	1			
Local Slope > Avg	Yes-No	N	N	N	N			
			BEHI	Calculation				
Bnk Ht / Bkf Ht		25	11.25	30	30			
BEHI Score		10	10	10	10			
Root Depth / Bnk H	t	0.03	0.07	0.03	0.03			
BEHI Score		10	10	10	10			
Weighted Root Den	sity	0.1%	0.1%	0.0%	0.0%			
BEHI Score		10	10	10	10			
Bank Angle		90	80	85	85			
BEHI Score		8	6	7	7			
Surface Protection		10%	25%	10%	10%			
BEHI Score		9	6.5	9	9			
Bank Material Adjus	stment	7	7	7	7			
Stratification Adjust	ment	0	0	0	0			
Total BEHI Score		54	49.5	53	53			
Rating		EXTREME	EXTREME	EXTREME	EXTREME			
			NBS	Calculation				
Thalweg Position S	core	1	1	1	1			
Toe Depth Ratio Sc	ore	0	0	0	0			
Local Slope Score		0	0	0	0			
Total NBS Rating		1	1	1	1			
Rating		VERY LOW	VERY LOW	VERY LOW	VERY LOW			
			Erosion	Rate Prediti	on			
Erosion Rate (ft/yr)		0.2	0.2	0.2	0.2			Shee
Erosion Total (ft ³ /yr)	100	45	360	360			8

Erosion Rate Calculations								
Project:	1049-MSMC			Date:	3/21/2011			
Stream:	IVA BRANCH	ł		Crew:				
Reach/Description:				Page: 7	Of: 7			
<u>Feature</u>	<u>Units</u>							
Reach Name		IVA	IVA	IVA	IVA		IVA	
Station/Location		DITCH	DITCH	1+50	1+50			
Photo No.								
Reach Length	ft	75	75	150	150			
Bank	RT-LT-Both	L	R	L	R			
Bank Height	ft	9	9	3	3			
Bankfull Height	ft	0.3	0.3	0.3	0.3			
Root Depth	ft	0.2	0.2	0.5	0.5			
Root Density	%	1%	1%	30%	30%			
Bank Angle	Degrees	80	80	90	90			
Surface Protection	%	15%	15%	10%	10%			
Bank Material	C-G-S-SC	SC	SC	SC	SC			
Stratification	Yes-No	N	N	N	N			
Thalweg Position	C-OC-Toe	OC	OC	OC	OC			
D _{TOE} /D _{MEAN}	<1 or >1	1	1	1	1			
Local Slope > Avg	Yes-No	N	N	N	N			
			BEHI	Calculation				
Bnk Ht / Bkf Ht		30	30	10	10			
BEHI Score		10	10	10	10			
Root Depth / Bnk H	t	0.02	0.02	0.17	0.17			
BEHI Score		10	10	7.8	7.8			
Weighted Root Den	sity	0.0%	0.0%	5.0%	5.0%			
BEHI Score		10	10	9	9			
Bank Angle		80	80	90	90			
BEHI Score		6	6	8	8			
Surface Protection		15%	15%	10%	10%			
BEHI Score		8	8	9	9			
Bank Material Adjus	stment	0	0	0	0			
Stratification Adjust	ment	0	0	0	0			
Total BEHI Score		44	44	43.8	43.8			
Rating		VERY HIGH	VERY HIGH	VERY HIGH	VERY HIGH			
			NBS	Calculation				
Thalweg Position Se	core	1.5	1.5	1.5	1.5			
Toe Depth Ratio Sc	ore	0	0	0	0			
Local Slope Score		0	0	0	0			
Total NBS Rating		1.5	1.5	1.5	1.5			
Rating		LOW	LOW	LOW	LOW			
			Erosion	Rate Prediti	on			
Erosion Rate (ft/yr)		0.23	0.23	0.23	0.23			Sheet
Erosion Total (ft ³ /yr))	155.25	155.25	103.5	103.5			517

EXISTING - CORRECTED

Reach	River Ste	Drofilo	O Total	Min Ch El	W/S Elay	E G Slope	Froude # Chi	Vel Chal	Shear Chan	Power Chan	Power Total
Reach	River Sta	FIOTIle	(cfo)	(ff)	(#)	(#/#)	Floude # CIII	(ft/c)	(lb/sq #)	(lb/ft e)	(lb/ft e)
Moin	60124.45	DVE	(CIS)	(11)	(11)	(1011)	0.50	(103)		(10/11 5)	(IDALS)
Main	60124.15	2.00	190.00	1272.07	1274.90	0.009308	0.59	4.00	1.01	4.03	4.03
Main	60124.15	2 yi	400.00	1272.07	1270.24	0.000211	0.36	7 10	1.00	1.02	1.52
Main	60124.15	10 yr	930.00	1272.07	1270.09	0.007606	0.60	7.12	1.00	13.25	4.07
Main	69124.15	50 yr	1610.00	1272.07	1279.00	0.005551	0.53	7.33	1.75	11.10	2.01
Main	69124.15	100 yr	2480.00	1272.07	1281.27	0.003802	0.40	7.13	1.55	11.00	2.40
Main	68919.69	BKF	190.00	1270.91	1273.60	0.004818	0.44	3.59	0.59	2.12	2.12
Main	68919.69	2 yr	400.00	1270.91	1275.17	0.003727	0.41	4.21	0.70	2.96	2.96
Main	68919.69	10 yr	930.00	1270.91	1276.79	0.005518	0.52	6.39	1.45	9.25	4.67
Main	68919.69	50 yr	1610.00	1270.91	1277.83	0.007831	0.64	8.68	2.50	21.74	10.48
Main	68919.69	100 yr	2480.00	1270.91	1278.76	0.010449	0.75	11.07	3.88	42.90	19.99
Main	68434.66	BKF	190.00	1267.08	1271.15	0.004957	0.44	4.16	0.74	3.08	3.08
Main	68434.66	2 vr	400.00	1267.08	1272.97	0.005108	0.46	4.95	0.97	4.79	4.79
Main	68434.66	10 vr	930.00	1267.08	1274.43	0.005030	0.47	5.62	1.17	6.57	1.38
Main	68434.66	50 vr	1610.00	1267.08	1275.34	0.004674	0.47	6.15	1.31	8.07	1.28
Main	68434.66	100 yr	2480.00	1267.08	1276.10	0.004565	0.48	6.65	1.47	9.75	1.65
Main	68285 54	BKE	190.00	1265 49	1270 44	0.004786	0.39	3.96	0.68	2 70	2 70
Main	68285 54	2 vr	400.00	1265.49	1272.05	0.006337	0.00	5 38	1.16	6.22	6.22
Main	68285 54	10 yr	930.00	1265.49	1273 80	0.003563	0.37	5.00	0.90	4 49	0.72
Main	68285 54	50 yr	1610.00	1265.49	1274 75	0.003337	0.36	5.36	0.98	5.25	1.01
Main	68285.54	100 yr	2480.00	1265.49	1275.43	0.003912	0.40	6.18	1.27	7.83	1.70
Main	68095.50	BKF	190.00	1265.25	1269.70	0.003366	0.36	3.50	0.52	1.81	1.81
Main	68095.50	2 yr	400.00	1265.25	1271.02	0.005067	0.46	4.89	0.95	- 4.65	- 3.73
Main	68095.50	10 yr	930.00	1265.25	1273.46	0.001216	0.24	3.34	0.37	1.25	0.22
Main	68095.50	50 yr	1610.00	1265.25	1274.38	0.001408	0.27	3.96	0.50	1.99	0.41
Main	68095.50	100 yr	2480.00	1265.25	1274.94	0.002045	0.33	5.03	0.79	3.98	0.88
Main	68051.88		Bridge								
Main	68000.80	BKF	190.00	1266.89	1269.23	0.005311	0.45	3.34	0.54	1.81	1.81
Main	68000.80	2 yr	400.00	1266.89	1270.55	0.003702	0.41	3.82	0.61	2.32	1.36
Main	68000.80	10 yr	930.00	1266.89	1272.00	0.003281	0.41	4.73	0.81	3.83	0.86
Main	68000.80	50 yr	1610.00	1266.89	1273.04	0.003066	0.41	5.30	0.95	5.01	1.10
wan	68000.80	100 yr	2480.00	1266.89	12/4.03	0.002879	0.41	5.77	1.06	6.09	1.45
Main	67799.13	BKF	190.00	1264.99	1268.35	0.003460	0.38	3.31	0.48	1.59	1.59
Main	67799.13	2 yr	400.00	1264.99	1269.73	0.003762	0.41	4.25	0.71	3.03	2.01
Main	67799.13	10 yr	930.00	1264.99	1271.32	0.003260	0.41	5.09	0.90	4.59	0.87
Main	67799.13	50 yr	1610.00	1264.99	1272.43	0.002966	0.40	5.58	1.01	5.64	1.11
Main	67799.13	100 yr	2480.00	1264.99	1273.47	0.002799	0.40	6.03	1.12	6.75	1.49
Main	67586.76	BKF	190.00	1264.67	1267.55	0.004013	0.40	3.42	0.52	1.80	1.80
Main	67586.76	2 yr	400.00	1264.67	1268.84	0.004545	0.45	4.37	0.78	3.41	2.64
Main	67586.76	10 yr	930.00	1264.67	1270.20	0.005489	0.53	6.19	1.38	8.53	1.76
Main	67586.76	50 yr	1610.00	1264.67	1271.26	0.005621	0.55	7.25	1.76	12.74	2.50
Main	67586.76	100 yr	2480.00	1264.67	1272.28	0.005519	0.56	8.06	2.05	16.56	3.35
Main	67117 21	BKE	190.00	1262 37	1265 55	0 004512	0.42	3.40	0.53	1.81	1 81
Main	67117 21	2 vr	400.00	1262.37	1266 70	0.004511	0.42	4.46	0.55	3.58	2.08
Main	67117.21	10 vr	930.00	1262.37	1267.98	0.004512	0.47	5.51	1.10	6.07	1.17
Main	67117.21	50 yr	1610.00	1262.37	1269.04	0.004510	0.48	6.37	1.37	8.73	1.85
Main	67117.21	100 vr	2480.00	1262.37	1270.07	0.004511	0.50	7 16	1.63	11 70	2 69

PROPOSED 15'BENCH W/OUT PIPES

HEC-RAS P	lan: Proposed	10 River: Sol		each: Main	MC Flow	E.C. Slana	Eroudo # Chl	Vol Chol	Shoor Chan	Power Chan	Power Total
Reach	River Sta	Profile	Q Iotal	Min Ch El	W.S. Elev	E.G. Slope	Froude # Chi	(ft/e)	(lb/sq.ft)	(lb/ft s)	(lb/ft s)
	0010115	DICE	(CIS)	(11)	(11)	(1011)	0.50	(105)	(10/54/11)	(10/11 5)	(10/11 5)
Main	69124.15	BKF	190.00	1272.07	1274.90	0.009317	0.59	5.79	1.01	8.04	4.04
Main	69124.15	2 yr	400.00	1272.07	1270.17	0.008709	0.00	7.19	1.40	13.60	4.77
wain	69124.15	10 yr	930.00	1272.07	1270.07	0.007992	0.60	7.10	1.09	13.00	4.11
Main	69124.15	50 yr	1610.00	12/2.07	12/9.68	0.005531	0.53	7.35	1.79	13.10	2.01
Main	69124.15	100 yr	2480.00	12/2.07	1281.27	0.003795	0.46	7.12	1.55	11.05	2.40
Main	00040.00	DKE	100.00	4070.04	1072.67	0.004264	0.42	2.40	0.55	1.01	1 01
Main	68919.69	BNF	190.00	1270.91	1273.07	0.004504	0.42	4.50	0.00	3.66	3.66
Main	68919.69	2 yr	400.00	1270.91	1274.90	0.004519	0.44	4.50	1.55	10.20	5.00
Main	68919.69	10 yr	930.00	1270.91	12/0.00	0.006055	0.54	0.50	1.55	21.76	10.10
Main	68919.69	50 yr	1610.00	1270.91	1277.83	0.007838	0.64	0.09	2.51	21.70	10.49
Main	68919.69	100 yr	2480.00	12/0.91	1278.82	0.010060	0.74	10.93	3.11	41.19	19.15
	00404.00	DKE	100.00	4007.04	1070 56	0.000005	0.60	E 26	1.26	6.74	3.54
iviain	68434.66	BKF	190.00	1207.01	1270.50	0.009003	0.00	5.50	1.20	10.74	6 12
Main	68434.66	2 yr	400.00	1267.61	12/1./3	0.008678	0.63	0.03	1.79	12.23	0.12
Main	68434.66	10 yr	930.00	1267.61	1273.84	0.005841	0.56	7.01	1.91	14.52	2.01
Main	68434.66	50 yr	1610.00	1267.61	12/4.85	0.005977	0.58	8.57	2.30	19.09	1.97
Main	68434.66	100 yr	2480.00	1267.61	1275.58	0.006445	0.61	9.54	2.74	26.17	2.54
		-	100.00	1007 17	1000.01	0.000040	0.04	0.07	0.24	0.94	0.54
Main	68285.54	BKF	190.00	1267.17	1269.94	0.002243	0.31	2.07	0.31	0.04	0.54
Main	68285.54	2 yr	400.00	1267.17	12/1.28	0.001784	0.30	3.24	0.39	1.20	0.00
Main	68285.54	10 yr	930.00	1267.17	12/3.63	0.001029	0.25	3.44	0.38	1.29	0.22
Main	68285.54	50 yr	1610.00	1267.17	1274.54	0.001387	0.29	4.38	0.58	2.55	0.44
Main	68285.54	100 yr	2480.00	1267.17	1275.10	0.002084	0.37	5.66	0.95	5.37	0.95
Main	69005 50	DVE	100.00	1066 61	1260 50	0.001660	0.27	2 4 4	0.25	0.62	0.43
Main	68005.50		190.00	1200.01	1209.09	0.001603	0.27	3 12	0.25	1 11	0.40
Main	66095.50	2 yr	400.00	1200.01	1270.97	0.001311	0.20	. 0.12	0.30	0.66	0.42
Main	66095.50	TO yr	930.00	1200.01	1273.52	0.000808	0.19	2.11	0.24	1.37	0.11
Main	68095.50	50 yr	1610.00	1200.01	12/4.30	0.000601	0.23	3.59	0.38	1.37	0.23
wan	66095.50	100 yr	2400.00	1200.01	1274.04	0.001430	0.31	4.02	0.00	5.20	0.00
Main	69051 99		Bridge								
Wall	00001.00		Dhuge								
Main	68000 80	BKE	190.00	1266 34	1268 91	0.003073	0.36	2.95	0.39	1.15	0.83
Main	68000 80	2 vr	400.00	1266.34	1269.97	0.003067	0.38	3.87	0.59	2.28	1.20
Main	68000 80	10 yr	930.00	1266.34	1271.53	0.003184	0.42	5 15	0.91	4.71	0.97
Main	68000.80	50 yr	1610.00	1266.34	1272 67	0.003061	0.43	5.84	1 09	6.39	1.21
Main	68000 80	100 yr	2480.00	1266.34	1273.73	0.002873	0.42	6.33	1.21	7.66	1.49
Main	67799.13	BKF	190.00	1265.72	1268.29	0.003157	0.36	2.97	0.40	1.19	0.87
Main	67799.13	2 vr	400.00	1265.72	1269.35	0.003091	0.39	3.88	0.59	2.29	1.16
Main	67799.13	10 vr	930.00	1265.72	1270.93	0.002965	0.40	4.98	0.85	4.25	0.89
Main	67799.13	50 yr	1610.00	1265.72	1272.12	0.002734	0.40	5.56	0.99	5.48	1.09
Main	67799.13	100 yr	2480.00	1265.72	1273.20	0.002591	0.40	6.05	1.11	6.70	1.41
Main	67586.76	BKF	190.00	1265.08	1267.53	0.003818	0.40	3.15	0.46	1.44	1.14
Main	67586.76	2 yr	400.00	1265.08	1268.62	0.003528	0.41	4.07	0.66	2.68	1.39
Main	67586.76	10 yr	930.00	1265.08	1270.01	0.004431	0.49	5.85	1.20	7.03	1.50
Main	67586.76	50 yr	1610.00	1265.08	1271.09	0.004767	0.53	7.02	1.61	11.30	2.18
Main	67586.76	100 yr	2480.00	1265.08	1272.13	0.004857	0.55	7.95	1.95	15.48	3.02
Main	67117.21	BKF	190.00	1262.37	1265.55	0.004512	0.42	3.40	0.53	1.81	1.81
Main	67117.21	2 yr	400.00	1262.37	1266.70	0.004511	0.45	4.46	0.80	3.58	2.08
Main	67117.21	10 yr	930.00	1262.37	1267.98	0.004512	0.47	5.51	1.10	6.07	1.17
Main	67117.21	50 yr	1610.00	1262.37	1269.04	0.004510	0.48	6.37	1.37	8.73	1.85
Main	67117.21	100 yr	2480.00	1262.37	1270.07	0.004511	0.50	7.16	1.63	11.70	2.69

PROPOSED 10' BENCH W/ PIPES

HEC-RAS Pla	an: Proposed 10	River: South	luddyCr Reach	Main					0	De la Ohara	Davisa Tatal
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	E.G. Slope	Froude # Chl	Vel Chnl	Shear Chan	Power Chan	Power I otal
			(cfs)	(ft)	(ft)	(ft/ft)		(ft/s)	(Ib/sq ft)	(ID/Tt S)	(ID/TT S)
Main	69124.15	BKF	190.00	1272.07	1274.96	0.009330	0.59	4.60	1.01	4.65	4.65
lain	69124.15	2 уг	400.00	1272.07	1276.17	0.008800	0.60	5.79	1.40	8.12	8.12
lain	69124.15	10 yr	930.00	1272.07	1278.24	0.006796	0.56	6.79	1.67	11.36	3.57
lain	69124.15	50 yr	1610.00	1272.07	1279.71	0.005391	0.52	7.29	1.75	12.77	2.71
<i>N</i> ain	69124.15	100 yr	2480.00	1272.07	1281.27	0.003784	0.45	7.11	1.55	11.01	2.47
										1	
<i>N</i> ain	68919.69	BKF	190.00	1270.91	1273.57	0.004968	0.44	3.63	0.60	2.19	2.19
<i>N</i> ain	68919.69	2 yr	400.00	1270.91	1274.95	0.004567	0.45	4.52	0.82	3.71	✓ 3.71
lain	68919.69	10 yr	930.00	1270.91	1277.25	0.003910	0.44	5.72	1.13	- 6.44	- 3.18
lain	68919.69	50 yr	1610.00	1270.91	1278.12	0.006472	0.58	8.16	2.17	- 17.73	✓ 8.45
lain	68919.69	100 vr	2480.00	1270.91	1278.90	0.009631	0.73	10.78	3.65	- 39.31	18.22
		1									
lain	68434 66	BKE	190 00	1267.61	1270.93	0.005508	0.48	4.60	0.89	4.08	+ 2.39
lain	68434.66	2 \r	400.00	1267.61	1272.16	0.006222	0.55	6.23	1.44	+ 8.94	+ 4.73
	68434.66	10 yr	930.00	1267.61	1273 40	0.012002	0.79	10.35	3.62	** -37.49	++ 18.14
	69434.66	50 yr	1610.00	1267.61	1274.63	0.008389	0.69	9.94	3.12	++ _31.02	1 3.65
	69434.66	100 yr	2490.00	1267.61	1275.60	0.006824	0.63	9.83	2.91	+ 28.62	++ 2.68
am	00434.00	100 yi	2400.00	1207.01	12/0.00	0.000024	0.00	0.00	2.01		
		DUE	100.00	4007 47	4070 60	0.000000	0.21	2.01	-3 0.16	- 0.33	0.20
lain	68285.54	BKF	190.00	1267.17	1270.62	0.000890	0.21	2.01	- 0.10	- 0.00	0.45
lain	68285.54	2 yr	400.00	1267.17	12/1.91	0.001054	0.24	2.11	0.27	2 50	- 0.44
lain	68285.54	10 yr	930.00	1267.17	12/3.17	0.001748	0.32	4.24	0.59	2.30	0.4
lain	68285.54	50 yr	1610.00	1267.17	12/4.19	0.002024	0.35	5.12	0.01	4.13	1.05
lain	68285.54	100 yr	2480.00	1267.17	1275.09	0.002251	0.38	5.88	1.02	6.01	• 1,00
-1-	00005 50	DKE	100.00	1066 61	1270 50	0.000544	0.16	1 72	-3 0.11	0 19	0.10
	66095.50	DKF	190.00	1200.01	1270.30	0.000638	0.10	2 30	- (0.18	- 0.42	0.07
lain	68095.50	2 yr	400.00	1200.01	1271.77	0.000055	0.13	2.00	0.10	/ 1.13	0.01
lain	68095.50	10 yr	930.00	1200.01	1272.99	0.000955	0.24	3.20	0.49	1.13	0.10
lain	68095.50	50 yr	1610.00	1266.61	1273.99	0.001143	0.27	3.90	0.40	2.09	0.0
Aain	68095.50	100 yr	2480.00	1266.61	12/4.85	0.001377	0.30	4.73	0.05	3.00	0.00
lain	68051.88		Mult Open								
Aoin	69000 90	PKE	100.00	1266 34	1268 92	0.003076	0.36	2 95	-3 0.39	1.16	- 0.92
	68000.80	DKF	190.00	1266.34	1200.02	0.003085	0.00	3.91	0.60	2.34	14
	66000.60	2 yr	400.00	1200.34	1270.00	0.003005	0.00	5.24	0.00	4 94	+ 0.9
lain	68000.80	10 yr	930.00	1200.34	1271.39	0.003241	0.42	5.02	1 12	6.62	+ 12 ⁴
lain	68000.80	50 yr	1610.00	1200.34	1212.13	0.003102	0.43	6.30	1.12	7.87	1.2
lain	68000.80	100 yr	2480.00	1200.34	12/3./8	0.002901	0.43	0.39	1.23	7.07	1 1.50
lain	67700 13	BKE	190.00	1265 72	1268 29	0.003163	0.36	2.97	-3 0.40	1.19	- 0.9
lain	67700 12	2 \/r	400.00	1265.72	1260.20	0.003145	0.30	3.03	0.40	2.38	- 13
all) Ioin	67700 42	2 91	400.00	1203.72	1209.37	0.003145	0.39	5.04	0.01	4 30	 0.80
nall1 Aoin	67700 40	FO yr	930.00	1203.72	1270.98	0.002909	0.41	5.04	1.00	5.59	1.00
//alln	67700.40	50 yr	1610.00	1205.72	12/2.1/	0.002741	0.40	5.00	1.00	6.70	1.00
nam	01199.13	100 yr	2480.00	1205.72	1213.25	0.002594	0.40	0.09	1.11	0.79	1.4
lain	67586 76	BKE	190.00	1265.08	1267 53	0.003820	0.40	3 15	0.46	1 44	12
lain	67586.76	2 \vr	400.00	1265.08	1268 63	0.003505	0.41	4 11	0.40	2 77	1.6
	67596 76	2 yi	400.00	1205.00	1200.03	0.003595	0.41	5.09	1.25	7.40	1.00
	07500.70	FOur	930.00	1205.08	1270.02	0.004005	0.50	5.90	1.23	12.49	1.00
nain Aoin	0/500./6	50 yr	1610.00	1265.08	12/1.11	0.004948	0.54	1.17	1.07	12.00	2.20
naiñ	0/586.76	100 yr	2480.00	1265.08	12/2.14	0.005007	0.56	8.08	2.01	16.25	- 3.1
lain	67117 21	BKE	100.00	1262 37	1265 55	0.004512	0.42	3.40	0.53	1 81	18
Aoin	67117.21	2.00	190.00	1202.37	1205.55	0.004512	0.42	J.40	0.00	2.59	2.0
nall1 Aoin	67117.21	2 yi	400.00	1202.37	1200.70	0.004511	0.45	4.40	0.80	3.58	2.00
Anim	0/11/.21	TO yr	930.00	1202.37	1207.98	0.004512	0.47	5.51	1.10	0.07	1.1
viain	6/11/.21	50 yr	1610.00	1262.37	1269.04	0.004510	0.48	6.37	1.37	8.73	1.8
wain	6/11/.21	100 yr	2480.00	1262.37	1270.07	0.004511	0.50	7.16	1.63	11.70	2.69

PROPOSED 10' BENCH W/OUT PIPES

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	E.G. Slope	Froude # Chl	Vel Chnl	Shear Chan	Power Chan	Power Total
			(cfs)	(ft)	(ft)	(ft/ft)		(ft/s)	(lb/sq ft)	(lb/ft s)	(lb/ft s)
Main	69124.15	BKF	190.00	1272.07	1274.96	0.009301	0.59	4.60	1.01	4.63	4.6
Main	69124.15	2 yr	400.00	1272.07	1276.19	0.008588	0.59	5.74	1.38	7.90	7.9
Main	69124.15	10 yr	930.00	1272.07	1278.10	0.007751	0.59	7.11	1.85	13.15	- 4.5
Main	69124.15	50 yr	1610.00	1272.07	1279.69	0.005501	0.53	7.34	1.78	13.08	2.7
Main	69124.15	100 yr	2480.00	1272.07	1281.27	0.003785	0.45	7.11	1.55	11.02	2.4
										,	
Main	68919.69	BKF	190.00	1270.91	1273.68	0.004296	0.41	3.46	0.54	1.88	1.8
Main	68919.69	2 yr	400.00	1270.91	1275.02	0.004252	0.43	4.41	0.78	3.43	3.4
Main	68919.69	10 yr	930.00	1270.91	1276.83	0.005371	0.51	6.33	1.42	9.00	 ✓ 4.5
Main	68919.69	50 yr	1610.00	1270.91	1277.94	0.007308	0.62	8.49	2.38	20.19	9.6
Main	68919.69	100 vr	2480.00	1270.91	1278.89	0.009646	0.73	10.78	3.65	- 39.37	18.2
Main	68434 66	BKE	190.00	1267.61	1270.56	0.009180	0.61	5.42	1.29	+ 6.97	++ 4.2
Main	68434 66	2 vr	400.00	1267.61	1271.75	0.009302	0.66	7.10	1.93	+ 13.71	++ 7.4
Main	68434 66	10 yr	930.00	1267 61	1273 83	0.006652	0.60	8 11	2.17	17.59	++ 23
Main	68434 66	50 yr	1610.00	1267 61	1274 86	0.006498	0.61	8.95	2.50	1 22.37	++ 21
Main	68434 66	100 yr	2480.00	1267.61	1275.61	0.006747	0.63	9.78	2.88	· 28 20	1+ 26
VIGILI	00404.00	100 yi	2400.00	1207.01	1210.01	0.000141	0.00	5.70	2.00	20.20	2.0
Main	69295 54	PKE	100.00	1267 17	1260.05	0.002250	0.21	260	-1 0.21	- 0.84	06
Viairi	69295.54	DNF	190.00	1207.17	1209.95	0.002230	0.31	3.33	0.31	- 1 30	- 0.8
Viairi	60205.54	2 yi	400.00	1207.17	1277.62	0.001142	0.31	3.61	0.42	- 1.50	- 0.3
Viain	69295.54	FO yr	930.00	1207.17	1273.02	0.001500	0.20	3.01	0.42	- 1.30	- 0.4
	00205.54	50 yi	1010.00	1207.17	1274.55	0.001300	0.31	4.50	1.01	5.01	V 10
viain	08280.04	100 yr	2460.00	1207.17	1275.10	0.002222	0.36	5.65	1.01	- 5.91	- 1.0
Anin	00005 50	DKE	100.00	4000.04	1000 50	0.001690	0.07	2.45	-1 0.26	- 0.62	04
viain	68095.50	BKF	190.00	1200.01	1209.59	0.001689	0.27	2.45	0.20	0.03	0.4
viain	68095.50	2 yr	400.00	1266.61	1270.98	0.001530	0.20	3.14	0.36	- 1.14	- 0.4
Vlain	68095.50	10 yr	930.00	1266.61	1273.50	0.000623	0.20	2.80	0.24	0.68	- 0.1
Main	68095.50	50 yr	1610.00	1266.61	12/4.38	0.000873	0.24	3.61	0.39	1.40	0.2
Main	68095.50	100 yr	2480.00	1266.61	12/4.85	0.001438	0.31	4.83	0.68	3.29	0.6
vlain	68051.88		Bridge								
		DICE	100.00	1000.04	1000.00	0.000070	0.00	0.05		4.40	
Viain	68000.80	BKF	190.00	1266.34	1268.92	0.003076	0.36	2.95	0.39	1.16	- 0.9
Vlain	68000.80	2 yr	400.00	1266.34	1270.00	0.003085	0.39	3.91	0.60	2.34	1.4
Vlain	68000.80	10 yr	930.00	1266.34	12/1.59	0.003240	0.42	5.24	0.94	4.94	• 0.9
Main	68000.80	50 yr	1610.00	1266.34	12/2./3	0.003100	0.43	5.92	1.12	6.62	1.2
Main	68000.80	100 yr	2480.00	1266.34	1273.78	0.002901	0.43	6.39	1.23	7.87	* 1.5
									1		
Vlain	67799.13	BKF	190.00	1265.72	1268.29	0.003163	0.36	2.97	-3 0.40	1.19	- 0.9
Main	67799.13	2 yr	400.00	1265.72	1269.37	0.003145	0.39	3.93	0.61	2.38	1.3
Main	67799.13	10 yr	930.00	1265.72	1270.98	0.002989	0.41	5.04	0.87	4.38	0.8
Main	67799.13	50 yr	1610.00	1265.72	1272.17	0.002738	0.40	5.60	1.00	5.57	1.0
Main	67799.13	100 yr	2480.00	1265.72	1273.25	0.002594	0.40	6.09	1.11	6.79	v 1.4
Main	67586.76	BKF	190.00	1265.08	1267.53	0.003820	0.40	3.15	0.46	1.44	1.2
Main	67586.76	2 yr	400.00	1265.08	1268.63	0.003595	0.41	4.11	0.67	2.77	1.6
Main	67586.76	10 yr	930.00	1265.08	1270.02	0.004604	0.50	5.98	1.25	7.49	1.5
Main	67586.76	50 yr	1610.00	1265.08	1271.11	0.004921	0.54	7.15	1.67	11.92	2.2
Main	67586.76	100 yr	2480.00	1265.08	1272.14	0.005006	0.56	8.08	2.01	16.24	✓ 3.1
Main	67117.21	BKF	190.00	1262.37	1265.55	0.004512	0.42	3.40	0.53	1.81	1.8
Main	67117.21	2 yr	400.00	1262.37	1266.70	0.004511	0.45	4.46	0.80	3.58	2.0
Main	67117.21	10 yr	930.00	1262.37	1267.98	0.004512	0.47	5.51	1.10	6.07	1.1
Main	67117.21	50 yr	1610.00	1262.37	1269.04	0.004510	0.48	6.37	1.37	8.73	1.8
Main	67117.21	100 yr	2480.00	1262.37	1270.07	0.004511	0.50	7.16	1.63	11.70	2.6

PROPOSED 5' BENCH & NAMON SECTION

HEC-RAS I	Plan: Plan 05 H	River: SouthMu	iddyCr Reach	Main			E 1 // OLL		0	D 01	D
Reach	River Sta	Profile	Q Iotal	Min Ch El	W.S. Elev	E.G. Slope	Froude # Chi	Vel Chni	Shear Chan	Power Chan	Power I otal
		DIVE	(cts)	(ft)	(ff)	(ft/ft)	0.50	(ft/s)	(ID/sq π)	(ID/π S)	(ID/TT S)
Main	69124.15	BKF	190.00	1272.07	1274.96	0.009213	0.59	4.58	1.00	4.58	4.58
Main	69124.15	2 yr	400.00	12/2.0/	1276.22	0.008333	0.59	5.68	1.35	7.64	7.64
Main	69124.15	10 yr	930.00	1272.07	1278.16	0.007353	0.58	6.98	1.78	12.40	4.10
Main	69124.15	50 yr	1610.00	12/2.07	12/9./0	0.005435	0.52	7.31	1.76	12.89	2.74
Main	69124.15	100 yr	2480.00	12/2.07	1281.28	0.003772	0.45	7.11	1.54	10.97	2.46
		DIVE	100.00	1070.01	1070.00	0.004007	0.44	2.44	0.54	4.05	4.05
Main	68919.69	BKF	190.00	1270.91	12/3.69	0.004237	0.41	3.44	0.54	1.85	1.85
Main	68919.69	2 yr	400.00	12/0.91	1275.13	0.003873	0.41	4.27	0.72	3.09	3.09
Main	68919.69	10 yr	930.00	1270.91	1277.03	0.004617	0.48	6.03	1.27	7.67	3.83
Main	68919.69	50 yr	1610.00	1270.91	1278.06	0.006744	0.59	8.27	2.24	18.53	8.85
Main	68919.69	100 yr	2480.00	1270.91	1278.96	0.009300	0.71	10.65	3.55	37.86	17.51
Main	69434 66	DVE	100.00	1267 61	1270 63	0.008806	0.60	5.40	1 26	6.83	5 30
Moin	69434.00	DNF	190.00	1207.01	1270.03	0.000808	0.00	7.46	2.12	15.84	9.60
Main	69434.00	2 yi	400.00	1207.01	127 1.02	0.010041	0.08	9.76	2.12	22.14	3.00
Main	00434.00	10 yr	930.00	1207.01	1273.04	0.007740	0.64	0.70	2.55	22.14	2.12
Main	68434.66	50 yr	1610.00	1207.01	1274.09	0.007000	0.63	9.52	2.71	20.23	2.27
wan	68434.66	100 yr	2480.00	1207.01	1275.00	0.006915	0.64	9.95	2.90	29.03	2.00
Moin	69295 54	DVE	100.00	1267 17	1270.01	0.002546	0.33	2.97	0.36	1.03	0.78
Moin	60205.54	DNF	190.00	1207.17	1270.01	0.002340	0.33	3.67	0.50	1.05	1.24
Moin	69295 54	2 yi	400.00	1267.17	1273.62	0.002278	0.34	3.07	0.51	1.00	0.30
Main	00203.34	TO yr	930.00	1207.17	1273.02	0.001383	0.29	3.90	0.30	2.57	0.50
Main	00200.04	50 yr	1610.00	1207.17	1274.04	0.001742	0.33	4.90	0.75	3.57	0.55
Wam	00205.54	100 yr	2460.00	1207.17	1275.12	0.002510	0.40	0.21	1.14	7.00	1.15
Main	68095 50	BKE	190.00	1266 61	1269 57	0.002158	0.31	2.74	0.32	0.88	0.65
Main	68095 50	2 vr	400.00	1266.61	1270 95	0.001954	0.32	3.51	0.45	1.60	0.59
Main	68095 50	10 vr	930.00	1266.61	1273 50	0.000702	0.21	2.96	0.27	0.81	0.13
Main	68095 50	50 yr	1610.00	1266.61	1274 37	0.000960	0.25	3 77	0.42	1.60	0.28
Main	68095 50	100 yr	2480.00	1266.61	1274 85	0.001567	0.32	5.02	0.74	3 70	0.69
	00000.00		2100.00	1200.01	127 1.00	0.001007	0.02	0.02		0.10	0.00
Main	68051.88		Bridge								
Main	68000 80	BKE	190.00	1266 34	1268 92	0.003076	0.36	2 95	0.39	1 16	0.92
Main	68000 80	2 yr	400.00	1266.34	1270.00	0.003085	0.00	3.91	0.60	2 34	1 43
Main	68000 80	10 yr	930.00	1266 34	1271.50	0.003240	0.00	5 24	0.00	A 94	0.97
Main	68000 80	50 yr	1610.00	1266.34	1277 73	0.003101	0.42	5.92	1 12	6.62	1 21
Main	68000.80	100 yr	2480.00	1266.34	1273 78	0.002901	0.43	6.39	1.12	7.87	1.50
Man	00000.00	100 yr	2400.00	1200.04	1210.10	0.002001	0.40	0.00	1.20	1.01	1.00
Main	67799.13	BKF	190.00	1265.72	1268.29	0.003163	0.36	2.97	0.40	1.19	0.95
Main	67799.13	2 yr	400.00	1265.72	1269.37	0.003144	0.39	3.93	0.61	2.38	1.35
Main	67799.13	10 yr	930.00	1265.72	1270.98	0.002988	0.41	5.04	0.87	4.38	0.88
Main	67799.13	50 yr	1610.00	1265.72	1272.17	0.002739	0.40	5.60	1.00	5.58	1.08
Main	67799.13	100 yr	2480.00	1265.72	1273.25	0.002593	0.40	6.09	1.11	6.78	1.41
Main	67586 76	BKE	190.00	1265.08	1267 53	0.003820	0.40	3 15	0.46	1 44	1 22
Main	67586.76	2 vr	400.00	1265.08	1268.63	0.003594	0.40	J. 15 4 11	0.40	2 77	1.22
Main	67586 76	10 vr	930.00	1265.08	1270.03	0.004598	0.50	5.08	1 25	7 48	1.00
Main	67586 76	50 yr	1610.00	1265.08	1271 11	0.004935	0.50	7 16	1.25	11 96	2.25
Main	67586.76	100 yr	2480.00	1265.08	1272.14	0.005004	0.56	8.08	2.01	16.24	3.10
											3.10
Main	67117.21	BKF	190.00	1262.37	1265.55	0.004512	0.42	3.40	0.53	1.81	1.81
Main	67117.21	2 yr	400.00	1262.37	1266.70	0.004511	0.45	4.46	0.80	3.58	2.08
Main	67117.21	10 yr	930.00	1262.37	1267.98	0.004512	0.47	5.51	1.10	6.07	1.17
Main	67117.21	50 yr	1610.00	1262.37	1269.04	0.004510	0.48	6.37	1.37	8.73	1.85
Main	67117.21	100 yr	2480.00	1262.37	1270.07	0.004511	0.50	7.16	1.63	11.70	2.69

Summary								
	Stream:	Toms Creek						
	Watershed:	Forested						
	Location:	Pisgah Natio	onal Forest, 5.4 Miles North of Marion, NC, US 221 N, Old					
		Toms Creek	Road.	,		- , ,		
	Latitude:	35.74889						
	Longitude:	82.06083						
	State:	North Caroli	na					
	County:	McDowell						
	Date:	July 6, 2011	<u>-</u> .					
	Observers:	Grant Ginn,	Chris Engl	e, Megan Maillo	oux, Kevii	n Mitchell		
	Channel type:	C4						
Drainac	channel type.	3 33						
Dramag	notes:	Channel Distu	urbances u/s	s and d/s. some c	hannel inc	cision		
				,				
Dimension			b	ankfull channel				
floodalaia	width flood pr	ana araa (#)	typical	min 20.0	max			
noodplain:	width flood pro	one area (II)	55.U 2.2	30.0	05.U 2.4			
riffle-run:	x-area bar	kfull (sa ft.)	36.6	30.2	36.6			
	width	bankfull (ft)	23.4	19.4	23.4			
	me	an depth (ft)	1.56	1.6	1.6			
	m	ax depth (ft)	2.0	2.0	2.2			
	hydraul	ic radius (ft)	1.5					
pool:	x-area	pool (sq.ft.)	33.3	32.5	33.3			
	W	idth pool (ft)	17.7	17.0	17.7			
	max de	epth pool (ft)	2.9	2.3	2.9			
dimensionless	hydraul	ic radius (ft)	1.7	min			_	
aimensioniess r	atios:	donth ratio	typical	12.2	14 0			
	entren	chment ratio	24	12.3	2.8			
	riffle may	depth ratio	1.3	1.3	1.4			
	bank	height ratio	1.1	1.0	1.2			
	po	ol area ratio	0.9	0.9	0.9			
	poc	ol width ratio	0.8	0.7	0.8			
	pool max	depth ratio	1.9	1.5	1.9			
hydraulics:			typical	min	max			
	dischar	ge rate (cfs)	143.0	127.9	158.1			
	chann	el slope (%)	0.93		mov			
		(alocity (ft/c)	nine-run	min	max 4.4	poo		
	Fro	ude number	3.9 0.57	4.∠ 0.62	4.4 0.63	4.3 0.2	, 4	
	shear stress	s (lbs/sq.ft.)	0.857	0.02	0.891	0.94	57	
	shear	elocity (ft/s)	0.665	0.653	0.678	0.70)6	
	stream	power (lb/s)	83.0	74.2	91.7	5.10	-	
	unit stream po	wer (lb/ft/s)	3.546	3.835	4.230			
	relative	e roughness	16.4					
	frictio	n factor u/u*	5.9	7.8	7.9			
thresho	old grain size (t*:	=0.06) (mm)	47.5	40.7	43.8			
	Shield'	s parameter	0.087					

Pattern				
	typical	min	max	
meander length (ft)	300.0			
belt width (ft)	100.0			
amplitude (ft)				
radius (ft)		32.0	514.0	
arc angle (degrees)				
stream length (ft)	600.0			
valley length (ft)	550.0			
Sinuosity	1 1			
Meander Length Ratio	12.8			
Meender Width Ratio	12.0			
Rediuo Ratio	4.5	1.4	22.0	
Profile		1.4	22.0	
FIGHE	typical	min	max	
pool-pool spacing (ft)	151.8	97.5	193.0	
riffle length (ft)	40.6	17.7	64.0	
nool length (ft)	26.0	12.0	36.0	
run length (ft)	20.0	6.8	60.0	
alide length (ft)	28.6	10.0	44.0	
	20.0	13.2	44.0	
channel slope (%)	0.93	o 	0.0	
riffle slope (%)	1.9	0.77	3.6	
pool slope (%)	0.36	0.19	0.64	
run slope (%)	0.54	0	1.4	
glide slope (%)	0.53	0.36	0.93	
measured valley slope (%)				
valley slope from sinuosity (%)	1.0			
Riffle Length Ratio	1.7	0.8	2.7	
Pool Length Ratio	1.1	0.5	1.5	
Run Length Ratio	1.4	0.3	2.6	
Glide Length Ratio	1.2	0.8	1.9	
Riffle Slope Ratio	2	0.8	3.9	
Pool Slope Ratio	0.4	0.2	0.7	
Run Slope Ratio	0.6	0	1.5	
Glide Slope Ratio	0.6	0.4	1	
Pool Spacing Ratio	6.5	4.2	8.2	
Channel Materials	Riffle		Point	BkF
	Surface		Bar	Channel
D16 (mm)	7.2			11
D35 (mm)	20		4.7	19
D50 (mm)	29		10	31
D65 (mm)	42		19	45
D84 (mm)	69		35	71
D95 (mm)	120		52	94
mean (mm)	22.3		02	27 Q
dispersion	3.2			21.5
skowposs	_0.1			_0.1
Shewiless Shape Easter	-0.1			-0.1
	10/		0%	<u>∩0/</u>
	00/		1000/	U70
% Sand	0%		00%	4%
% Gravel	12%		0%	70%
% Cobble	1/%		0%	20%
% Boulder	1%		0%	0%
% Bedrock	1%			
% Clay Hardpan				
% Detritus/Wood				
% Artificial				
Largest Mobile (mm)	760			

1) Individual Pebble Count

Two individual samples may be entered below. Select sample type for each.

Pool Section @ Sta 10+49.4 facing d/s

7/6/11

Riffle Section @ Sta 12+7 facing d/s

7/6/11

Run Section @ Sta 12+62 facing d/s

7/6/11

Riffle Section @ Sta 14+69.8 facing d/s

7/6/11

Summary						
	Stream:	Cold Spring	s Creek			
	Watershed:	Pigeon Rive	r			
	onal Fores	t, Harmon De	n, I-40 Exi	t 7		
		0				
	Latitude:	35.76352				
	Longitude:	82.97678				
	State:	North Caroli	na			
	County:	Havwood				
	Date:	October 25.	2007			
	Observers:	SGG & CME				
	Channel type:	R4				
Drainage	e area (sq.mi.).	2.77				
2 ruinuge	notes:					
	1003.					
Dimension		-	t	ankfull chann	iel	
			typical	min	max	
floodplain:	width flood pro	one area (ft)	48.0	43.0	52.0	
	low bar	nk height (ft)	3.3	3.1	3.5	
riffle-run:	x-area ban	kfull (sq.ft.)	34.6	33.4	34.6	
	width	bankfull (ft)	23.4	23.4	24.7	
	mea	an depth (ft)	1.48	1.3	1.5	
	m	ax depth (ft)	2.2	1.8	2.2	
	hydraul	ic radius (ft)	1.3			
pool:	x-area	pool (sq.ft.)	33.4	30.0	33.4	
	w	idth pool (ft)	29.6	25.2	29.6	
	max de	epth pool (ft)	2.3	2.3	2.3	
	hydraul	ic radius (ft)	1.1			
dimensionless ra	atios:	denth ratio	typical		max	
	widtr	huepin ratio	10.0 0.1	8.CI 10	10.4 2.2	
	rittle men	dopth rotic	2.1	1.8	2.Z	
	nine max	boight rotio	1.5	1.2	1.5	
	Dank	ol area ratio	1.5	1.4	1.0	
	po	width ratio	1.0	0.9	1.0	
	pool may	depth ratio	1.5	1.1	1.5	
hydraulics:	poorma		typical	min	max	
ny dradnoo.	dischar	ge rate (cfs)	210.0	202.1	218.6	
	chann	el slope (%)	2.4			
			riffle-run	min	max	pool
	v	elocity (ft/s)	6.1	6.1	6.3	6.3
	Fro	ude number	0.94	0.94	0.95	1.12
	shear stress	(lbs/sq.ft.)	1.947	1.920	2.043	1.647
	shear v	elocity (ft/s)	1.002	0.995	1.027	0.922
	stream	power (lb/s)	314.5	302.7	327.4	
	unit stream po	wer (lb/ft/s)	13,440	12.131	13.866	
	relative	roughness	10.0			
	friction	n factor u/u*	6.1	5.9	6.2	
threshol	ld grain size (t*=	=0.06) (mm)	100.4	94.3	100.4	
	Shield	s parameter	0.128			
	5					

Pattern				
	typical	min	max	
meander length (ft)	100.0			
belt width (ft)	43.0			
amplitude (ft)				
radius (ft)	75.0	44.0	103.0	
arc angle (degrees)				
stream length (ft)	400.0			
valley length (ft)	380.0			
Sinuosity	1.1			
Meander Length Ratio	4.3			
Meander Width Ratio	1.8			
Radius Ratio	3.2	1.9	4.4	
Profile	tunical			
pool pool apooing (#)	typical	51 O	112 O	
riffle length (ft)	20.0	20.0	40.0	
nine length (it)	20.0	20.0	40.0	
run longth (ft)	0.7	5.0	42.0	
alide length (ft)	3.7 10.7	5.0	20.0	
channel slope (%)	2 38	0.0	20.0	
riffle slope (%)	2.50	15	13	
nool slope (%)	0.25	0.083	4.5	
	5.1	0.005	0. 4 8.1	
dide slope (%)	0.1	0.2	23	
gilde slope (%)	0.01	0.2	2.5	
valley slope from sinuosity (%)	25			
Riffle Length Ratio	1.0	0.9	17	
Pool Length Ratio	0.8	0.3	1.7	
Run Length Ratio	0.4	0.2	0.6	
Glide Length Ratio	0.5	0.2	0.9	
Riffle Slope Ratio	1.1	0.6	1.8	
Pool Slope Ratio	0.1	0	0.2	
Run Slope Ratio	2.1	0.6	3.4	
Glide Slope Ratio	0.3	0.1	1	
Pool Spacing Ratio	3.7	2.2	4.8	
Channel Materials	Riffle		Point	BkF
	Surface		Bar	Channel
D16 (mm)	5.2		30	3.3
D35 (mm)	22		71	15
D50 (mm)	45		79	31
D65 (mm)	75		87	62
D84 (mm)	130		99	120
D95 (mm)	190		110	170
mean (mm)	26.0			19.9
dispersion	5.8			6.6
skewness	-0.2			-0.2
Shape Factor				
% Silt/Clay	1%		0%	2%
% Sand	10%		100%	9%
% Gravel	48%		0%	53%
% Cobble	41%		0%	33%
% Boulder	0%		0%	0%
% Bedrock	1%			4%
% Clay Hardpan				
% Detritus/Wood				
% Artificial	04			
Largest Mobile (mm)	91			

Weighted pebble cou	nt by bed features	5
Material	Size Range (mm)	weighted
silt/clay	0 - 0.062	2.1
very fine sand	0.062 - 0.125	0.0
fine sand	0.125 - 0.25	0.5
medium sand	0.25 - 0.5	3.8
coarse sand	0.5 - 1	3.2
very coarse sand	1 - 2	1.6
very fine gravel	2 - 4	6.8
fine gravel	4 - 6	3.8
fine gravel	6 - 8	2.1
medium gravel	8 - 11	4.2
medium gravel	11 - 16	8.5
coarse gravel	16 - 22	5.4
coarse gravel	22 - 32	9.1
very coarse gravel	32 - 45	5.8
very coarse gravel	45 - 64	9.0
small cobble	64 - 90	9.6
medium cobble	90 - 128	11.7
large cobble	128 - 180	9.0
very large cobble	180 - 256	3.8
small boulder	256 - 362	0.0
small boulder	362 - 512	0.0
medium boulder	512 - 1024	0.0
large boulder	1024 - 2048	0.0
very large boulder	2048 - 4096	0.0
total particle	weighted count:	100
	-	
bedrock		3.8
clay hardpan		0.0
detritus/wood		0.0
artificial		0.0
total	weighted count:	103.8
iotai	noiginea count.	100.0
Note:		
NOIG.		

Riffle	
Material Size Range (mm)	Count
silt/clay 0 - 0.062	2
very fine sand 0.062 - 0.125	
fine sand 0.125 - 0.25	
medium sand 0.25 - 0.5	1
coarse sand 0.5 - 1	1
very coarse sand 1 - 2	1
very fine gravel 2 - 4	4
fine gravel 4 - 6	2
fine gravel 6 - 8	3
medium gravel 8 - 11	3
medium gravel 11 - 16	3
coarse gravel 16 - 22	2
coarse gravel 22 - 32	4
very coarse gravel 32 - 45	2
very coarse gravel 45 - 64	2
small cobble 64 - 90	6
medium cobble 90 - 128	8
large cobble 128 - 180	8
very large cobble 180 - 256	3
small boulder 256 - 362	
small boulder 362 - 512	
medium boulder 512 - 1024	
large boulder 1024 - 2048	
very large boulder 2048 - 4096	
total particle count:	55
bedrock	1
clay hardpan	
detritus/wood	
artificial	
total count:	56
Note:	

Pool										
Material Size Range (mm)	Count		Pool Cold	Springs Creek						
silt/clay 0 - 0.062	1			opinigo oroon			- - -c	umulative %	# of particles	
very fine sand 0.062 - 0.125		<								_
fine sand 0.125 - 0.25	1			silt clay	sand	. orave	el cobh	le bould	er	
medium sand 0.25 - 0.5	1		^{100%} T			giave			9	
coarse sand 0.5 - 1	2		90%							
very coarse sand 1 - 2	1	4	5078	<u> </u>	1 1 1 1 1 1 1 1			- i i i i i i i i i i i i i i i i i i i	8	
very fine gravel 2 - 4	8		80% -						7	
fine gravel 4 - 6	1			i i i i i i i i i i i i i i i i i i i		i iiii	i i i <mark>∕</mark> iiii	i i i i i i i i i i i i i i i i i i i	· · · · · · · · · · · · · · · · · · ·	
tine gravel 6 - 8	1		70% -				<u>. / i .</u>		6	5
medium gravel 8 - 11	2						I X I I I			um
	6	4	± 00% -						5	be
coarse gravel 16 - 22	2		u 50%							rof
Coarse gravel 22 - 32	5		and and		- i i i i i i i i i i i i i i i i i i i	1 1111		- i i i i i i i i i i i i i i i i i i i	4	pa
very coarse gravel <u>32 - 45</u>	0		<u>ଅ</u> 40% –				* 			rtic
very coarse graver 45 - 64	1		e d						3	les
	4	11	30% -						1 1 1 1 1 1 1	
	0		20%						+ 2	
Voru Jarge cobble 128 - 180	2	11	2078		iii			i i i i i i i i i i i i i i i i i i i	1 1 1 1 1 1 1	
small boulder 256 - 362			10% -						1	
small boulder 262 - 512		11								
sinaii boulder <u>512 - 512</u>		11	0% –	· · · · ?			╸╺╶╘╶╶╝╌┩╌╝ ╷┚			
large boulder 1024 - 2049		11	0.0	1 0.1	1	10	100	1000	10000	
very large boulder 2048 - 4006		11				particle size (m	nm)			
total partiala count	50	i .								
total particle count.	90	D-1		0:				T		
h a dra al r	4			Size (mm)		Size Distribution	<u> </u>	I ype	hadroak	20/
Dedrock	1			D16 2.6		mean 14.7		Slit/clay 2%	Dedrock	2%
clay naropan		4		D35 12	di	spersion 6.6		sand 9%		
detritus/wood		4		D50 26	SI	kewness -0.20)	gravei 67%		
artificial		4		D65 43				cobble 21%		
total count:	57			D84 83				boulder 0%		
				B a a a a						
Noto				D95 120						
Note:				D95 120						
Note:				D95 120						
Note:				D95 120						
Note: Run Material Size Range (mm)	Count		Run Cold S	D95 120			-=	-cumulative %		3
Note: Run Material Size Range (mm) silt/clay 0 - 0.062	Count		Run Cold S	D95 120				-cumulative %	# of particles	5
Note: Run Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 0.405 - 0.052	Count		Run Cold S	D95 120						3
Note: Run Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25	Count	• • • •	Run Cold S	D95 120 prings Creek	sand	grave		- cumulative %		5
Note: Run Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5	Count		Run Cold S	D95 120 prings Creek silt/clay	sand	grave	1 cobb	cumulative %	er	5
Note: Run Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1	Count 1 2		Run Cold S	D95 120	sand	grave		cumulative %	er 7	5
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.5 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2	Count 1 2	F	Run Cold S	D95 120	sand	grave			er 7	3
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very fine gravel 2 - 4	Count 1 2		Run Cold S	D95 120	sand	grave		- cumulative %	# of particles	5
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6	Count 1 2	F	Run Cold S	D95 120	sand	grave		Cumulative %		3
Note: Run Material Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8	Count 1 2		Run Cold S	D95 120	sand	grave			+ of particles	2 nu
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11	Count 1 2 2		Run Cold S	D95 120	sand	grave			# of particles	numb
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.5 coarse sand 0.5 - 1 very fine gravel 2 - 4 fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 1 - 1 medium gravel 1 - 1	Count 1 2 2 4 2		Run Cold S	D95 120	sand	grave			# of particles	number c
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22	Count 1 2 2 4 3		Run Cold S	D95 120	sand	grave			# of particles	number of p
Note: Run silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.25 - 0.25 medium sand 0.25 - 1.25 coarse sand 0.25 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 coarse gravel 22 - 32	Count 1 2 2 4 3 4		Run Cold S	D95 120	sand	grave		Cumulative %		number of parti
Note: Run Silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.025 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 32 - 45	Count 1 2 4 3 4 1 1		Run Cold S 100% 90% 80% 70% 60% 50% 40%	D95 120	Sand	grave				number of particle:
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.062 wery fine sand 0.25 - 0.052 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 45 - 64 very coarse gravel 45 - 64	Count 1 2 4 3 4 1 4 5		Run Cold S	D95 120	sand	grave			# of particles	number of particles
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.525 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 16 - 22 very coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 32 - 64 small coobble 64 - 90 medium gravel 0 - 420	Count 1 2 4 3 4 1 4 5 5		Run Cold S	D95 120	sand	grave			# of particles	number of particles
Note: Run silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 2 - 32 very coarse gravel 2 - 64 small cobble 64 - 90 medium cobble 64 - 90 medium cobble 128 128	Count 1 2 4 3 4 1 4 5 5 6		Run Cold S	D95 120	sand	grave			# of particles	number of particles
Note: Run silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.062 - 0.125 medium sand 0.25 - 0.5 coarse sand 0.25 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 25 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180	Count 1 2 4 3 4 1 5 5 6 2		Run Cold S 100% 90% 80% 70% 60% 40% 30% 20% 10%	D95 120	sand	grave		Cumulative %		number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.025 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 22 - 32 very coarse gravel 22 - 45 very coarse gravel 22 - 32 very coarse gravel 24 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large_cobble 26 - 262	Count 1 2 4 3 4 1 4 5 5 6 2		Run Cold S 100% 90% 80% 70% 60% 40% 30% 20% 10%	D95 120	sand	grave			# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.062 wery fine sand 0.125 - 0.052 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 12 - 32 very coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 90 - 128 large cobble 180 - 256 small boulder 266 - 512	Count 1 2 4 3 4 1 4 5 6 2		Run Cold S 100% 90% 80% 70% 50% 40% 30% 20% 10% 0%	D95 120	sand	grave			# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.52 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 16 - 22 coarse gravel 32 - 45 very coarse gravel 90 - 128 large cobble 64 - 90 medium cobble 90 - 128 large cobble 180 - 256	Count 1 2 4 3 4 1 4 5 6 2 2		Run Cold S 100% 90% 80% 70% 100% 50% 30% 20% 10% 0% 0.01	D95 120	sand	grave			# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very tine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 2 - 2 very coarse gravel 2 - 64 small cobble 11 - 16 coarse gravel 22 - 32 very coarse gravel 22 - 64 small cobble 64 -90 medium cobble 90 - 128 large cobble 180 - 256 small boulder 256 - 362 small boulder 512 - 1024 uera boulder 512 - 1024	Count 1 2 4 3 4 1 4 5 5 6 2 2		Run Cold S	D95 120	sand	grave	al cobt		# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 512 - 1024 large boulder 2024 - 2048	Count		Run Cold S 100% 90% 80% 70% 60% 30% 20% 10% 0% 0.01	D95 120	sand	grave	n cobb	Le bould be bou	# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.062 medium sand 0.25 - 0.05 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 45 - 64 small cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 small boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 <td>Count 1 2 2 4 3 3 4 1 4 5 6 2 2</td> <td></td> <td>Run Cold S 100% 90% 80% 70% 60% 40% 30% 20% 10% 0% 0.01</td> <td>D95 120</td> <td>sand</td> <td>grave</td> <td>cobt cobt cobt cobt cobt cobt cobt cobt</td> <td></td> <td># of particles</td> <td>number of particles</td>	Count 1 2 2 4 3 3 4 1 4 5 6 2 2		Run Cold S 100% 90% 80% 70% 60% 40% 30% 20% 10% 0% 0.01	D95 120	sand	grave	cobt cobt cobt cobt cobt cobt cobt cobt		# of particles	number of particles
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 12 - 45 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 90 - 128 large cobble 180 - 256 small boulder 362 - 512 medium boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048	Count 1 2 4 3 4 1 4 5 6 2 39		Run Cold S	D95 120	sand	grave	cobb cobb	Le bould be bou	# of particles	number of particles
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.5 coarse sand 0.5 - 1 very coarse sand 0.5 - 1 very coarse sand 1 - 2 very tine gravel 2 - 4 fine gravel 6 - 8 medium gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 16 - 22 coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 128 180 very large cobble 180 - 256 small boulder 362 - 512 small boulder 362	Count 1 2 4 3 4 1 4 5 6 2 2 39 2	β 	Run Cold S 100% 90% 80% 70% 60% 50% 30% 20% 10% 0% 0.01	D95 120	sand	grave	n cobb	- cumulative %	# of particles	number of particles
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.52 medium sand 0.25 - 0.5 coarse sand 0.5 1 very coarse sand 1 - 2 very tine gravel 4 - 6 fine gravel 4 - 6 fine gravel 8 - 11 medium gravel 8 - 11 medium gravel 8 - 11 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 25 - 64 small cobble 64 -90 medium cobble 90 - 128 large cobble 180 - 256 small boulder - 362 - 512 medium boulder 1024 - 2048 very large boulder 2048	Count 1 2 4 3 4 4 5 5 6 2 3 3 3 3 3		Run Cold S	D95 120	sand	grave	n cobt	- cumulative %		number of particles
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.025 - 0.5 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 8 - 11 medium gravel 8 - 11 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 122 - 32 very coarse gravel 22 - 32 very coarse gravel 25 - 64 small cobble 64 -90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 362 - 512 medium boulder 1024 <t< td=""><td>Count</td><td>5</td><td>Run Cold S</td><td>D95 120</td><td>sand</td><td>grave</td><td>al cobb</td><td>cumulative %</td><td># of particles</td><td>number of particles</td></t<>	Count	5	Run Cold S	D95 120	sand	grave	al cobb	cumulative %	# of particles	number of particles
Note: Run Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.025 - 0.052 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 22 - 32 very coarse gravel 45 - 64 small cobble 90 - 128 large cobble 180 - 256 small boulder - 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total - part	Count		Run Cold S 100% 90% 80% 70% 60% 30% 20% 10% 0% 0.01	D95 120	sand	grave	e (mm)		# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 0.25 - 0.5 coarse sand 0.25 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 90 - 128 large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 1024 large boulder 1024 - 2048 very la	Count 1 2 4 3 4 1 4 5 6 2 39 3 3 3 1 1 1 2 1 2 4 3 4 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	β	Run Cold S	D95 120	sand	grave	cobb cobb cobb cobb cobb cobb cobb cobb	- cumulative %	# of particles	number of particles
Note: Size Range (mm) silt/clay 0 - 0.062 very fine sand 0.062 - 0.125 fine sand 0.125 - 0.52 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very tine gravel 2 - 4 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 16 - 22 coarse gravel 16 - 22 coarse gravel 16 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 180 - 256 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 1024 - 2048 <	Count 1 2 4 3 4 1 4 5 6 6 2 3 9 3 9 3 9 3 4 2	β	Run Cold S	D95 120	sand	grave	100 e (mm)	- cumulative %	# of particles	number of particles

Note:

1) Individual Pebble Count

Two individual samples may be entered below. Select sample type for each.

Cold Springs Creek

Cross Section 1 – Riffle

Cold Springs Creek

Cross Section 2 – Pool

Cold Springs Creek

Cross Section 4 – Pool

APPENDIX D PROJECT PLAN SHEETS (11"x17")

	TABLE 1: SECTION DIMENSIONS										
RIFFLE DIMENSIONS							POOL	POOL DIMENSIONS			
REACH	SECTION	STATION	W _{BKF} (ft)	W _{BED} (ft)	W _{THAL} (ft)	W _{FP} (ft)	d _{RIFF} (ft)	d _{TOE} (ft)	W _{IN} (ft)	W _{OUT} (ft)	d _{POOL} (ft)
SOUTH MUDDY CREEK	1	100+00 TO 112+61	30.8	22.1	6.6	10	2.17	1.74	18.5	15.4	3.26
MIDDLE SPROUSE BRANCH	2	201+74 TO 203+51	4.8	2.3	0.7	2	0.52	0.41	2.9	2.4	0.78
LOWER SPROUSE BRANCH	2	203+51 TO 208+04	5.2	2.6	0.8	3	0.55	0.44	3.1	2.6	0.83
UPPER IVA BRANCH	2	302+14 TO 305+40	4.8	2.3	0.7	2	0.52	0.41	2.9	2.4	0.78
LOWER IVA BRANCH	2	305+40 TO 306+96	5.5	2.8	0.8	3	0.57	0.46	3.3	2.8	0.86

NOTE: IN LOCATIONS WHERE	MATURE	VEGETATION	EXISTS	ADJACENT 1	TO PF	ROPOSED	CHANNEL,	THE	FLOODPLAIN	WIDTH	(WFP)	SHALL	BE F	REDUCED	AS	DIRECTED	BY T	THE
ENGINEER																		

	TABLE	2: SUPPLEN	IENTAL BED	MATERIAL		
			PERCENT OF	TOTAL MAX		
REACH	Sand/Clay	1/2"stone (No 57)	3/4"stone (No 5)	2"stone (Surge)	6" stone	12" st
SOUTH MUDDY CREEK	10%	30%	-	30%	30%	-
MIDDLE SPROUSE BRANCH	100%	-	-	-	-	-
LOWER SPROUSE BRANCH	100%	-	-	-	-	-
UPPER IVA BRANCH	100%	-	-	-	-	-
LOWER IVA BRANCH	100%	-	-	-	-	-

	TABLE 3: MORPHOLOGIC TABLE									
REACH	SOUTH MUDDY CREEK	MIDDLE SPROUSE BRANCH	LOWER SPROUSE BRANCH	UPPER IVA BRANCH	LOWER IVA BRANCH					
STREAM TYPE	C4	B5	B5c	B5	B5c					
DRAINAGE AREA (mi²)	4.7	0.03	0.04	0.03	0.046					
W _{BKF} (ft)	30.8	4.8	5.2	4.8	5.5					
XS _{BKF} (ft²)	52.2	1.6	1.9	1.6	2.1					
d _{MEAN} (ft)	1.7	0.34	0.37	0.34	0.38					
d _{MAX} (ft)	2.17	0.52	0.55	0.52	0.57					
S _{AVG} (ft/ft)	0.003	0.031	0.014	0.058	0.026					
S _{VALLEY} (ft/ft)	0.006	0.043	0.022	0.043	0.060					
W/D RATIO	18.1	14.1	14.3	14.1	14.4					
ENTRENCHMENT RATIO	2.1	3.2	2.9	3.2	2.7					
SINUOSITY	1.03	1.07	1.07	1.09	1.02					
POOL-TO-POOL RATIO	5-7.2	3.3-4.8	3.4-4.9	3.3-4.8	3.5-5.0					
MEANDER WIDTH RATIO	3.2	2.3	3.1	2.5	2.2					

	INARY PLANS CONSTRUCTION	PROJECT N OWNER N TITLE	V ENC 7 FI IONE: (1 IIDDLE IC EEF	VOIF INEERII 67 A 828) 65 SOUT	Creek E Ng & Enviroi License no vre 8-3649 H MUDDY C	Engineerir NMENTAL CONSUL P-0417 Weaverville, N WWW.WOLFCREF REEK)] FING C 28787 EKENG.COM
NCH AT GRADE		T	YPIC	AL S	SECTIONS	S	
		SCALE AS	NOTED	2 0	RWN. BY MAM	реолест но. 1049	DRAWING NUMBER
		DATE	20/201 BY	с — — ВВУ.	366	DESCRIPTION	
GROUND							
34	CENERAL NOTES: 1. CONTRACTOR SHAL UTILITY INVESTIGAT THE CONTRACTOR VERIFICATION OF I UTILITIES WHICH M SHALL BEGIN AT AND PROCEED DO THE ENGINEER. 2. ALL MECHANIZED	L PERFO IONS PRI SHALL B EXISTING IAY AFFEO IHE UPST WNSTREA EQUIPMEN	RM ALL OR TO E RESF CONDIT CT PRO REAM I M UNLE	- NECE COMME PONSIBI IONS, (POSED END OF ESS AP RATED	SSARY SUBSI INCING CONS LE FOR FIELD DBSTRUCTION WORK. CON F EACH CHAN PROVED OTHI IN OR NEAR	URFACE TRUCTION.) S, AND VSTRUCTION INEL REACH ERWISE BY THE	
	STREAM OR ITS TI AND MAINTAINED 1	RIBUTARIE 10 PREVE	S SHAI	LL BE	INSPECTED R ATION OF STR	EGULARLY REAM	
TION DETAIL FOR	WATERS FROM FU OTHER TOXIC MAT	ELS, LUB ERIALS.	RICANTS	s, HYDI	RAULIC FLUID	S, OR	
_	 CLEARING AND GR NECESSARY FOR (UBBING S	SHALL CTION (BE LIMI DF THE	TED TO THAT PROPOSED	T WHICH IS CHANNEL	
	AND SHALL BE AF 4. CONTRACTOR IS R	PROVED ESPONSIE	BY THE BLE FO	E ENGI R PROV	NEER. /IDING SAFE	INGRESS	
	AND EGRESS FRO LIMITED TO, TRAFF	M SITE F TIC ON AL	OR ALL	. VEHIC T PUBL	LES, INCLUDI IC ROADS AF	NG BUT NOT FECTED BY	
_ G <u>ROUND</u>	CONSTRUCTION TR 5. CONTRACTOR SHAL	AFFIC.	SE OF	ALL WA	STE MATERIA	LS	
	GENERATED BY CO ALL FEDERAL STA	ONSTRUCT	ION AC	REGUI	IN ACCORD	ANCE WITH	
	6. THE CONTRACTOR	SHALL B	E RESE	PONSIBI	E FOR REPA	NRS TO	
3A			ES.				
	PRACTICES SHALL	OCCUR I	PRIOR	TO LAN	D DISTURBIN	G ACTIVITIES.	
	<u>SURVEY:</u> THE COORDINATE SYST	EM IS TH	IE NAD	83 STA	TE PLANE GF	RID.	
one							
-	CHANNEL CONSTRUCTION	<u>N NOTES</u>	<u>SECTION</u>	IS SHA	LL CONSIST	OF BED	
	MATERIAL EXCAVAT	ED FROM	EXISTI	NG CH	ANNEL. WHE	RE	
	SUPPLEMENTED WI	TH MATE	RIAL AC	CORDIN	IG TO TABLE	2 AND	
	2. THE CHANNEL BAN THE BANK PROTEC	WKS SHAL	LBES	STABILIZ	ED ACCORDI	NG TO DRITY	
	SHALL BE GIVEN	IN IMPLE	MENTAT	ION OF	METHOD 1.	IF	
	METHODS 2 AND	3 SHALL	BE IMF	PLEMEN	TED AS DIRE	CTED	
	3. DIMENSION TOLERA	NCES SH	IALL BE	E AS F	OLLOWS:		
	WIDTH: +, DEPTH: +	/- 0.5 F /- 0.2	FT _				
	RIFFLE ELE POOL ELEV	VATIONS: ATIONS: ·	+/- (+ 0.1	0.1 FT FT, -	0.5 FT		
	STRUCTURE 4. EXISTING CHANNEL	ELEVATION INDICATE	ONS: + ED TO	/- 0.1 BE FILI	ED ON PLAN	١S	
	SHALL BE BACKFIL	LED WITH	1 2-FC	OT LIF	TS AND COM	PACTED F FROM	
	BRUSH AND ORGA	NIC DEBR	RIS PRI	DR TO	BACKFILLING.		
	DURING CONSTRUC ENGINEER. ALL E DRY OR IN ISOLAT THE ENGINEER.	TION EXC XCAVATIO ED REAC	CEPT A	S ALLO L BE F	WED BY THE PERFORMED I AS ALLOWED	IN THE BY	
	TREE SURVEY/HARVES 1. WOODY MATERIAL AS IN-STREAM ST GRADE CONTROL, ENHANCEMENT/RES BOTH LARGE AND STEM AND ROOT I UPLAND AREAS AS STEPENU PARKES	T/PROTEC WILL BE RUCTURE AND AQU STORATION SMALL S WASS. T WELL A:	TION N HARVES S FOR ATIC H/ N. WO IZE DIA REES V S ALON	IOTES: STED O STREAM ABITAT ODY M METER VILL BE IG REC	N-SITE FOR MBANK STABII ATERIAL INCLI TREES INCLU HARVESTED ONSTRUCTED	USE LITY, JDING FROM	
	PROCESS. 2 PREFERRED HARVE	ST TREE	5 TO P	F SFIF	CTED FOR		
	Z. PREFERRED HARVE RESTORATION PUR	POSES SI	HALL F	IRST IN	CLUDE ALL		

- PREFERRATION PURPOSES SHALL FIRST INCLUDE ALL DISEASED, DAMAGED, HAZARD, AND UNDESIRABLE TREE SPECIES UNTIL THE QUANTITIES NEEDED FOR STREAM RESTORATION ARE MET. AREAS SELECTED FOR HARVEST SHALL OCCUR WITHIN THE LIMITS OF DISTURBANCE AND DELINEATED BY A CERTIFIED ARBORIST OR OTHER PROFESSIONAL ECOLOGIST/BIOLOGIST.
 ALL WOODY MATERIALS WILL BE STOCKPILED IN THE APPROVED STAGING AND STOCKPILE AREAS.
 IN ALL AREAS WHERE TREES ARE HARVESTED PROPER BMP AND EROSION AND SEDIMENT CONTROL WILL BE IMPLEMENTED AND THE AREA IMMEDIATELY STABILIZED WITH TEMPORARY AND PERMANENT SEEDING/MULCH AS HARVESTING OCCURS.

TABLE 4: STRUCTURE DIMENSIONS											
STRUCTURES BOULDERS											
REACH	L (FT)	W (FT)	X (FT)	LENGTH (FT)	WIDTH (FT)	DEPTH (FT)	LENGTH (FT)				
SOUTH MUDDY CREEK	35	10	8	3	2	1.5	51				
SPROUSE BRANCH 1	4	2	3	2	1.5	1	10				
SPROUSE BRANCH 2	4	2	3	2	1.5	1	10				
IVA BRANCH 1	4	2	3	2	1.5	1	10				
IVA BRANCH 2	4	2	3	2	1.5	1	10				

TABLE 5: LOG DIAMETERS									
TOTAL LOG LENGTH (FT) MIN DIAMETER (IN) MAX DIAMETER (IN)									
< 20	12	18							
20-40	18	24							
40-60	24	30							

			PI	V ENG 7 F1 IONE: (8	VO INEERI orida 328) 65	Creek Enc Ng & Environmen License no. P- Ave W 58-3649 W	JINCETIN ITAL CONSULT 0417 eaverville, NC WW.WOLFCREE] ING : 28787 KENG.COM
	PRELIMINA	RT PLANS	PROJECT N	AIDDLE	SOUT	H MUDDY CREE	К	
	NOT FOR CO	NSTRUCTION	OWNER N	IC EEP				
]	D	ETAI	LS			
			SCALE AS	NOTED	1	RWN. BY MAM	PROJECT NO.	DRAWING NUMBER
			DATE 3/	20/201	5 0	HKD. BY SGG	1049	38
			DATE	BY	REV.		DESCRIPTION	

RIFFLE SECTION

			PLANT MATERIAL		AREA	TOTAL
COMMON NAME	SCIENTIFIC NAME	STRATUM	SIZE	STEMS/ACRE	(Acres)	STEMS
STREAMSIDE					,	
Black Willow	Salix nigra	midstory	Live Stake	-	-	-
Buttonbush	Cephalanthus occidentalis	understory	Live Stake	-	-	-
Silky Dogwood	Comus amomum	understory	Live Stake	-	-	-
Ninebark	Physocarpus opulifolius	understory	Live Stake	-	-	-
TOTAL						
BUFFER						
Black Cherry	Prunus serotina	overstory	Bare Root	68	4.97	338
Black Oak	Quercus velutina	overstory	Bare Root	68	4.97	338
Dogwood	Cornus florida	overstory	Bare Root	68	4.97	338
Green Ash	Fraxinus pennsylvanica	overstory	Bare Root	68	4.97	338
Ironwood	Carpinus caroliniana	overstory	Bare Root	68	4.97	338
River Birch	Betula nigra	overstory	Bare Root	68	4.97	338
Sycamore	Plantanus occidentalis	overstory	Bare Root	68	4.97	338
Tulip Poplar	Liriodendron tulipifera	overstory	Bare Root	68	4.97	338
White Oak	Quercus alba	overstory	Bare Root	68	4.97	338
Witch Hazel	Hamamelis virginiana	midstory	Bare Root	68	4.97	338
TOTAL	•			680		3380

PRELIM NOT FOR	IINARY PLANS CONSTRUCTION	7 Florida Ave Weaverville, NC 26785 PHONE: (828) 658-3649 WWW.WOLFCREEKENG.CO PROMEN MIDDLE SOUTH MUDDY CREEK OWNER NC EEP TTLE PLANTING DETAILS SCALE AS NOTED DEWN. BY CIRC 1049 D			DRAWING NUMBE		
L	DI ANTINO NOTES.	DATE	20/201: BY	2 C		DESCRIPTION	
	 PLANTING NOTES: TEMPORARY AND PERMANENT SEED ALL DISTURBED ARRAS WILL BE STABILIZED USING MULCH AND TEMPORARY SEED TO PRVIDE ADEQUATE GROUND COVER AND CONDITION THE SOIL. MULCH MUST BE ADDED TO ACHIEVE 80% COVERAGE (ROUGHLY 2 TONS/ ACRE FOR WHEAT STRAW) A FERTILITY SOIL TEST SHALL BE USED TO DETERMINE FERTULZER AMOUNTS ON IF NO SOIL TEST IS AVAILABLE, A STANDARD MIXTURE SHALL BE APPLIED OF 2 TONS OF LIME PER ACRE AND 700-1000 LBS OF 10-10-10 FERTILIZER PER ACRE. BARE ROOT PLANTINGS PLANT BARE ROOT SHRUBS AND TREES IN AREAS IN INDICATED ON THE PLANS. PROVIDE 8' OF SPACING BETWEEN PLANTS. LOOSEN COMPACTED SOIL AND PLANT IN HOLES FORMED WITH A MATTOCK, DIBBLE BAR OR EQUAL. PROVIDE PLANTING HOLE SUFFICIENT IN SIZE AND DEPTH TO PREVENT CROWDING OF ROOTS. ROOTS SHALL BE KEPT MOIST DURING TRANSPORTATION, DISTRIBUTION, AND INSTALLATION. PLANTS SHALL BE HEELED-IN INTO MOIST SOIL IF NOT PROMPTLY PLANTE OLE ON THE PROJECT SITE. 						
	LIVE STAKES: 1. STAKES SHOLL 2. STAKES SHALL WITH BUDS PC 4. STAKES SHALL FEET IN LENGT 5. AFTER INSTALL PRIVNED WITH AND NO MORE	D BE CL ARE SPLI BE INST INTING U BE ½ T H. ATION, TI A SQUAF THAN 6	UT AND T SHAL JPWARD: O 2 ING HE TOP RE CUT G INCHE	INSTA L NOT PERPE S. CHES PORT LEAVIN S ABO	LLED ON THE : BE INSTALLED. NDICULAR TO 1 N DIAMETER AM ION OF STAKESS ION OF STAKESS ION OF STAKESS VE THE GROUN	SAME DAY. HE BANK AND ND 2 TO 3 S SHALL BE HAN 3 INCHES ID.	

COMMON NAME	SCIENTIFIC NAME	LBS/ ACRE			
nporary Seeding					
ust to March (cool season)					
S		120			
eat Grass	Triticum aestivum	120			
Grain	Secale cereal	40			
еу		100			
il to August (warm season)					

- ·				
let	Utochola ramose	20		
kwheat	Fagopyrum esculentum	40		

manent seeding		
ch white clover	Trifolium repens	10
hard Grass	Dactylis glomerata	30
eping Red Fescue	Festuca rubra	20
ean Lespedeza	Kummerowia striata	10
lsfoot trefoil	Lotus corniculatus	10

